Project description:Salt stress is a critical factor of abiotic stress in agricultural production that significantly affects seed germination and early seedling development. In this study, we characterized the function of the Arabidopsis Long Hypocotyl 2(HY2) gene in NaCl signaling. The hy2 mutant was NaCl-insensitive, whereas HY2-overexpressing lines shows NaCl-hypersensitive phenotypes during seed germination. Induced by exogenous NaCl, the transcription and the protein level of HY2 were up regulated, and HY2 positively mediated the expression of downstream stress-related genes of RD29A, RD29B and DREB2A. With further quantitative proteomics, we got the patterns of 7,391 proteins under salt stress, and identified 215 differentially regulated proteins (DRPs) specifically regulated by HY2. According to GO enrichment analysis, these proteins are mainly involved in ion homeostasis, hormone response, reactive oxygen species(ROS) metabolic, photosynthesis and detoxification pathway to response salt stress . These results direct the pathway of HY2 participating salt stress, and provide new insights for the plant to resist salt stress.
Project description:Salinity is a major abiotic stress at critical stages of seed germination and seedling establishment. Germination rate (GR) and field emergence rate (FER) are the key traits that determine the basic number of plants stand under field conditions. To explore molecular mechanisms in upland cotton under salt stress, a population of 177 recombinant inbred lines (RILs) and their parents were evaluated for seed germination traits (GP, germination potential; GR; FW, fresh weight; DW, dry weight; GL, germinal length) and seedling traits (FER; SH, seedling height; NL, Number of main stem leaves) in 2016-2018. Based on the linkage map contained 2,859 single nucleotide polymorphism (SNP) and simple sequence repeats (SSR) markers, traits under salt stress (E1) and normal condition, (E2) and the converted relative index (R-value) of three years’ trials were used to map quantitative trait loci (QTL). A total of three QTL and two clusters were detected as salt-tolerant QTL. Three QTL (qGR-Chr4-3, qFER-Chr12-3, qFER-Chr15-1) were detected under salt stress and R-value, which explained phenotypic variance of 9.62%-13.67%, and 4.2%-4.72%, 4.75%-8.96%, respectively. Two clusters (Loci-Chr4-2 and Loci-Chr5-4) harboring the QTL for four germination traits (GR, FER, GL, NL) and six seedling traits (GR, FER, DW, FW, SH, NL) were detected related under salt stress. A total of 691 genes were found in the candidate QTL or clusters. Among them, four genes (Gh_A04G1106, Gh_A05G3246, Gh_A05G3177, Gh_A05G3266) showed expression changes between sensitive and tolerant lines under salt stress, and were assigned as candidate genes in response to salt stress. The consistent salt-tolerance QTL identified in both germination and seedling stages will facilitate new information for cotton breeding.
Project description:Functional characterization of transgenic Arabidopsis plants constitutively expressing CAHB12 resulted in increased tolerance to drought stress, during distinct developmental stages, and increased tolerance to salt stress during seed germination. An insight into the gene set modulated by the ectopic expression of CAHB12 ectopic expression was provided by parallel sequencing (RNA-Seq) of high molecular weight and small RNA fractions. Classical drought responsive genes were mostly repressed, suggesting that other mechanisms are likely contributing to the tolerant phenotype exhibited by CAHB12-ectopically expressing plants, such as the pathway signaled by heat shock proteins and heat shock transcription factors.
Project description:To explore the molecular mechanisms of rice seed germination under salt stress mediated by OsMFT1, we established osmft1 mutant lines, and then examined the gene expression profiles in seeds of WT and osmft1.
Project description:The transcription factor (TF) basic/Helix-Loop- Helix (bHLH) is important for plant growth, development, and stress responses. OsbHLH068, which is a homologous gene of AtbHLH112 that is up-regulated under drought and salt stresses, as indicated by previous microarray data analysis. However, the intrinsic function of OsbHLH068 remains unknown. In the present study, we characterized the function and compared the role of OsbHLH068 with that of its homolog, AtbHLH112. Histochemical GUS staining indicated that OsbHLH068 and AtbHLH112 share a similar expression pattern in transgenic Arabidopsis during the juvenile-to-adult phase transition. Heterologous overexpression of OsbHLH068 in Arabidopsis delays seed germination, decreases salt-induced H2O2 accumulation,and promotes root elongation, whereas AtbHLH112 knock-out mutant displays an opposite phenotype. Both OsbHLH068-overexpressing transgenic Arabidopsis seedlings and the Atbhlh112 mutant display a late-fowering phenotype. Moreover, the expression of OsbHLH068-GFP driven by an AtbHLH112 promoter can compensate for the germination deficiency in the Atbhlh112 mutant, but the delayed-flowering phenotype tends to be more severe. Further analysis by microarray and qPCR indicated that the expression of FT is down-regulated in both OsbHLH068-overexpressing Arabidopsis plants and Atbhlh112 mutant plants, whereas SOC1 but not FT is highly expressed in AtbHLH112-overexpressing Arabidopsis plants. A comparative transcriptomic analysis also showed that several stress-responsive genes, such as AtERF15 and AtPUB23, were affected in both OsbHLH068- and AtbHLH112-over-expressing transgenic Arabidopsis plants. Thus, we propose that OsbHLH068 and AtbHLH112 share partially redundant functions in the regulation of abiotic stress responses but have opposite functions to control flowering in Arabidopsis, presumably due to the evolutionary functional divergence of homolog-encoded proteins.
2017-08-07 | GSE84087 | GEO
Project description:Transcriptome of ClROS1 transgenic Arabidopsis thaliana for salt stress germination
Project description:Eukaryotic genomes are pervasively transcribed by RNA polymerase II. Yet, the molecular and biological implications of such a phenomenon are still largely puzzling. Here, we describe noncoding RNA transcription upstream of the Arabidopsis thaliana DOG1 gene, which governs salt stress responses and is a key regulator of seed dormancy. We find that expression of the DOG1 gene is induced by salt stress, thereby causing a delay in seed germination. We uncover extensive transcriptional activity on the promoter of the DOG1 gene, which produces a variety of lncRNAs. These lncRNAs, named PUPPIES, are co-directionally transcribed and extend into the DOG1 coding region. We show that PUPPIES RNAs respond to salt stress and boost DOG1 expression, resulting in delayed germination. This positive role of pervasive PUPPIES transcription on DOG1 gene expression is associated with augmented pausing of RNA polymerase II, slower transcription and higher transcriptional burst size. These findings highlight the positive role of upstream co-directional transcription in controlling transcriptional dynamics of downstream genes.
Project description:Melatonin plays a potential role in multiple plant developmental processes and stress response. However, there are no reports regarding exogenous melatonin promoting rice seed germination under salinity and nor about the underlying molecular mechanisms at genome-wide. Here, we revealed that exogenous application of melatonin conferred roles in promoting rice seed germination under salinity. The putative molecular mechanisms of exogenous melatonin in promoting rice seed germination under high salinity were further investigated through metabolomic and transcriptomic analyses. The results state clearly that the phytohormone contents were reprogrammed, the activities of SOD, CAT, POD were enhanced, and the total antioxidant capacity was activated under salinity by exogenous melatonin. Additionally, melatonin-pre-treated seeds exhibited higher concentrations of glycosides than non-treated seeds under salinity. Furthermore, exogenous melatonin alleviated the accumulation of fatty acids induced by salinity. Genome-wide transcriptomic profiling identified 7160 transcripts that were differentially expressed in NaCl, MT100 and control. Pathway and GO term enrichment analysis revealed that genes involved in the response to oxidative stress, hormone metabolism, heme building, mitochondrion, tricarboxylic acid transformation were altered after melatonin pre-treatment under salinity. This study provides the first evidence of the protective roles of exogenous melatonin in increasing rice seed germination under salt stress, mainly via activation of antioxidants and modulation of metabolic homeostasis.
Project description:We analysed the translatome and transcriptome of Arabidopsis thaliana Col-0 WT at five distinct physiological states during seed germination. The aim was to obtain a global overview of genes under translational control during seed-seedling transition.
Project description:CuZn-superoxide dismutase (CuZn-SOD) and ascorbate peroxidase (APX) constitute first line of defence against oxidative stress. In the present study, PaSOD and RaAPX genes from Potentilla atrosanguinea and Rheum australe, respectively were overexpressed individually as well as in combination in Arabidopsis thaliana. We performed RNA-seq analysis of wild type and transgenic Arabidopsis thaliana overexpressing CuZn-SOD, APX and CuZn-SOD + APX under control and salt stress