Project description:The aim of the present study was to identify novel DNA methylation markers in bladder cancer (BCa) through genome-wide profiling of bladder cancer cell lines and subsequent MSP screening in urine samples. Experimental Design: MBD methylCap/seq was carried out to screen differentially methylated CpG islands using two BCa cell lines (5637 and T24) and two normal bladder mucosa (BM) samples. The top one hundred most hypermethylated targets were screened using Methylation Specific PCR (MSP) in small and big cohort of urine samples from BCa patients and normal controls. The diagnostic performance of the gene panel was further evaluated in different clinical scenarios. Results: In total, 1,627 gene promoter regions hypermethylated in BCa cell line were identified in genomic level methylation profiling. The followed screening procedure in clinical urine sample generated eight genes (VAX1, KCNV1, ECEL1, TMEM26, TAL1, PROX1, SLC6A20, and LMX1A) capable of differentiating BCa from normal control. Subsequent validation in a large sample size enabled the optimisation of 5 methylation targets (VAX1, KCNV1, TAL1, PPOX1 and CFTR) for BCa diagnosis with sensitivity and specificity of 86.32% and 87.13%, respectively. In addition, VAX1 and LMX1A methylation could predict the tumour recurrence. Conclusions: Tumor specific biomarkers of BCa could be established by first performing genome level methylation profiling with cell lines and then screening the potential targets in urine samples. The panel of methylated genes identified was promising for the early non-invasive detection and surveillance of BCa. MBD methylCap/seq was carried out to screen differentially methylated CpG islands using two BCa cell lines (5637 and T24), and two normal bladder tissue mix as control.
Project description:The aim of the present study was to identify novel DNA methylation markers in bladder cancer (BCa) through genome-wide profiling of bladder cancer cell lines and subsequent MSP screening in urine samples. Experimental Design: MBD methylCap/seq was carried out to screen differentially methylated CpG islands using two BCa cell lines (5637 and T24) and two normal bladder mucosa (BM) samples. The top one hundred most hypermethylated targets were screened using Methylation Specific PCR (MSP) in small and big cohort of urine samples from BCa patients and normal controls. The diagnostic performance of the gene panel was further evaluated in different clinical scenarios. Results: In total, 1,627 gene promoter regions hypermethylated in BCa cell line were identified in genomic level methylation profiling. The followed screening procedure in clinical urine sample generated eight genes (VAX1, KCNV1, ECEL1, TMEM26, TAL1, PROX1, SLC6A20, and LMX1A) capable of differentiating BCa from normal control. Subsequent validation in a large sample size enabled the optimisation of 5 methylation targets (VAX1, KCNV1, TAL1, PPOX1 and CFTR) for BCa diagnosis with sensitivity and specificity of 86.32% and 87.13%, respectively. In addition, VAX1 and LMX1A methylation could predict the tumour recurrence. Conclusions: Tumor specific biomarkers of BCa could be established by first performing genome level methylation profiling with cell lines and then screening the potential targets in urine samples. The panel of methylated genes identified was promising for the early non-invasive detection and surveillance of BCa.
Project description:Urine is a non-invasive biofluid for the identification of biomarkers to detect disease. In particular extracellular vesicles (EVs) have gained increased interest as a biomarker source, because the molecular content is protected against degradation. Clinical implementation on a daily basis requires protocols that inevitably includes short-term storage of the clinical samples, especially when samples are collected at home. However, little is known about the effect of delayed processing on the urinary EVs and their proteome. In the current study, we evaluated two different storage protocols. First, urine stored at 4˚C without any preservative, and second, a protocol compatible with at-home collection, urine with 40 mM EDTA stored at room temperature. For both conditions it was determined whether storage for 0, 2, 4 and 8 days leads to a change in the global urinary EV proteome profile using proteomics based on data-independent acquisition mass spectrometry. We show that EDTA does not affect the global proteome. Remarkably, the EV proteome was stable in both urine stored up to a week at room temperature with EDTA and in urine stored at 4˚C. These findings open up biomarker studies in urine collected via self-sampling.
Project description:Discrepancies in blood sample collection and processing could have a significant impact on levels of peptides in the blood, thus sample quality control is critical for successful biomarker identification and validation. In this study, we analyzed the effects of several pre-analytical processing conditions, including different storage times and temperatures of blood or plasma samples and different centrifugation forces, on the levels of peptides in human plasma samples using ethylenediaminetetraacetic acid (EDTA) as an anticoagulant. Both time and temperature were identified as major factors for peptide variation.
Project description:Intra-individual stability of the urine miRNA transcriptome was examined by investigating longitudinal changes over time in a cohort of patients with localized prostate cancer. Using training and validation cohorts, urinary miRNA biomarkers are characterized and validated their utility to identify aggressive prostate cancer.
Project description:Intra-individual stability of the urine miRNA transcriptome was examined by investigating longitudinal changes over time in a cohort of patients with localized prostate cancer. Using training and validation cohorts, urinary miRNA biomarkers are characterized and validated their utility to identify aggressive prostate cancer.
Project description:Intra-individual stability of the urine miRNA transcriptome was examined by investigating longitudinal changes over time in a cohort of patients with localized prostate cancer. Using training and validation cohorts, urinary miRNA biomarkers are characterized and validated their utility to identify aggressive prostate cancer.
Project description:We performed single cell transcriptomic analysis on 17 urine samples obtained from five subjects at two different occasions using both spot and 24-hour urine collection. In addition, we used a combined spot urine samples of five healthy individuals as a control sample. We sequenced a total of 71,667 cells. After quality control and downstream analysis, we found that epithelial cells were the most common cell types in the urine. We were also able to identify most kidney cell types in the urine, such as podocyte, proximal, and collecting duct (CD), in addition to macrophages, monocytes and lymphocytes.
Project description:There is a lack of comprehensive studies documenting the impact of sample collection conditions on metabolic composition of human urine. To address this issue, two experiments were performed at a three-month interval, in which midstream urine samples from healthy individuals were collected, pooled, divided into several aliquots and kept under specific conditions (room temperature, 4 °C, with or without preservative) up to 72 h before storage at -80 °C. Samples were analyzed by high-performance liquid chromatography coupled to high-resolution mass spectrometry and bacterial contamination was monitored by turbidimetry. Multivariate analyses showed that urinary metabolic fingerprints were affected by the presence of preservatives and also by storage at room temperature from 24 to 72 hours, whereas no change was observed for urine samples stored at 4 °C over a 72-hour period. Investigations were then focused on 280 metabolites previously identified in urine: 19 of them were impacted by the kind of sample collection protocol in both experiments, including 12 metabolites affected by bacterial contamination and 7 exhibiting poor chemical stability. Finally, our results emphasize that the use of preservative prevents bacterial overgrowth, but does not avoid metabolite instability in solution, whereas storage at 4 °C inhibits bacterial overgrowth at least over a 72-hour period and slows the chemical degradation process. Consequently, and for further LC/MS analyses, human urine samples should be maintained at 4 °C if their collection is performed over 24 hours.