Project description:We explore whether a low-energy diet intervention for Metabolic dysfunction-associated steatohepatitis (MASH) improves liver disease by means of modulating the gut microbiome. 16 individuals were given a low-energy diet (880 kcal, consisting of bars, soups, and shakes) for 12 weeks, followed by a stepped re-introduction to whole for an additional 12 weeks. Stool samples were obtained at 0, 12, and 24 weeks for microbiome analysis. Fecal microbiome were measured using 16S rRNA gene sequencing. Positive control (Zymo DNA standard D6305) and negative control (PBS extraction) were included in the sequencing. We found that low-energy diet improved MASH disease without lasting alterations to the gut microbiome.
Project description:We used microarrays to investigate gene expression changes in leukemic cells from Pax5+/- mice treated with antibiotics. Precursor B cell acute lymphoblastic leukemia (pB-ALL), the most common type of childhood leukemia, is frequently characterized by the cooperation of a genetic predisposition acquired in utero and secondary oncogenic events taking place only in a fraction of predisposed children after birth. Although predisposition can be detected at birth, it is currently unknown which factors determine the development of overt leukemia in genetic carriers and how this can be potentially prevented. Experimental studies have shown that infectious stimuli promote disease onset in genetically predisposed mice. Here, we analyzed the impact of the microbiome on leukemogenesis in a mouse model (Pax5+/- mice) that faithfully mimicks genetic predisposition and leukemogenesis of human pB-ALL related to the synergy of genetic predisposition and exposure to a natural infectious environment. Employing 16S rRNA sequencing and machine learning we can accurately predict a distinct gut microbiome which is determined by a specific constitutional genetic variant. Deprivation of the gut microbiome by antibiotic treatment enhanced pB-ALL development in Pax5+/- predisposed (63% vs. 22%) but not in wildtype mice (0%). This finding was observed in the presence but also -to a lesser extent- in the absence of a natural, infectious environment (48%). The composition of the gut microbiome constitutes a biomarker signature and allows to identify specifically those Pax5+/- mice that developed leukemia. This indicates that the gut microbiome can be used to identify carriers at risk to develop leukemia and to reduce this risk by early-life interventions.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:The gut-kidney axis plays a critical role in the progression of kidney disease through the interplay of gut microbiome and host proteome. This study examines the impact of microcystin-LR (MC-LR), a potent cyanotoxin, on kidney disease progression through alterations in the gut microbiome and host proteome.