Project description:Setaria viridis, the wild ancestor of millet, exhibits strong repression of crown root growth in drought. We compare in gene expression in the S. viridis crown between drought vs watered treatments. RNA from Lower region (crown) or Upper region (stem) of watered (W) or drought (D) treated Setaria plants were harvested at 6 or 9 days after sowing; there are 8 samples per biological repeat, 3 biological repeats.
Project description:Setaria viridis, the wild ancestor of millet, exhibits strong repression of crown root growth in drought. We compare in gene expression in the S. viridis crown between drought vs watered treatments.
Project description:Parallel Analysis of RNA Ends (PARE) sequencing reads were generated to validate putative microRNAs and identify cleavage sites in Sorghum bicolor and Setaria viridis.
Project description:Setaria viridis TPS1 was immunoprecipitated. The sample was separated by SDS-PAGE. The putative SvTPS1 band was sliced from the gel and analysed by mass spectrometry.
Project description:In the developing seeds of all higher plants, filial cells are symplastically isolated from the maternal tissue supplying photosynthate to the reproductive structure. Photoassimilates must be transported apoplastically, crossing several membrane barriers; a process facilitated by sugar transporters. Sugars Will Eventually be Exported Transporters (SWEETs) have been proposed to play a crucial role in apoplastic sugar transport during phloem unloading and the post-phloem pathway in sink tissues. Evidence for this is presented here for developing seeds of the C4 model grass Setaria viridis. Using immunolocalisation, SvSWEET4 was detected in various maternal and filial tissues within the seed along the sugar transport pathway, in the vascular parenchyma of the pedicel and the xylem parenchyma of the stem. Expression of SvSWEET4a in Xenopus laevis oocytes indicated that they function as high-capacity glucose and sucrose transporters. Carbohydrate and transcriptional profiling of Setaria seed heads showed that there were some developmental shifts in hexose and sucrose levels and consistent expression of SvSWEET4 homologues. Collectively, these results provide evidence for the involvement of SWEETs in the apoplastic transport pathway of sink tissues and allow a pathway for post-phloem sugar transport into the seed to be proposed.
Project description:Inflorescence architecture in cereal crops directly impacts yield potential through regulation of seed number and harvesting ability. Extensive architectural diversity found in inflorescences of grass species is due to spatial and temporal activity and determinacy of meristems, which control the number and arrangement of branches and flowers, and underlie plasticity. Timing of the floral transition is also intimately associated with inflorescence development and architecture. Here, we show that a single mutation in a gene encoding an AP1 A-class MADS-box transcription factor significantly delays flowering time and disrupts multiple levels of meristem determinacy in panicles of the C4 model panicoid grass, Setaria viridis.
Project description:A total of 18 libraries from Setaria viridis were constructed using the Illumina TruSeq sample preparation method. We used two biological replicate libraries from the leaf, whole panicles (inside leaf sheath), whole panicles (coming out of leaf sheath), whole panicles (completely out of leaf sheath), whole panicles (completely out of leaf sheath, after pollination), spikelet (inside leaf sheath), spikelet (coming out of leaf sheath), and spikelet (completely out of leaf sheath).
Project description:Setaria viridis is a small, rapidly growing grass species in the subfamily Panicoideae, a group that includes economically important cereal crops such as maize and sorghum. The S. viridis inflorescence displays complex branching patterns, but its early development is similar to that of other panicoid grasses, and thus is an ideal model for studying inflorescence architecture. Here we report detailed transcriptional resource that captures dynamic transitions across six sequential stages of S. viridis inflorescence development, from reproductive onset to floral organ differentiation. Co-expression analyses identified stage-specific signatures of development, which include homologs of previously known developmental genes from maize and rice, suites of transcription factors and gene family members, and genes of unknown function. This spatiotemporal co-expression map and associated analyses provide a foundation for gene discovery in S. viridis inflorescence development, and a comparative model for exploring related architectural features in agronomically important cereals.