Project description:Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that acts as a master regulator of oxygen homeostasis in metazoan species by binding to hypoxia response elements (HREs) and activating the transcription of hundreds of genes in response to reduced O2 availability. RNA polymerase II (Pol II) initiates transcription of many HIF target genes under non-hypoxic conditions, but pauses after 20-100 nucleotides and requires HIF-1 binding for release. Here we report that in hypoxic breast cancer cells, HIF-1 recruits TRIM28 and DNA-dependent protein kinase (DNA-PK) to HREs to release paused Pol II. We show that HIF-1α and TRIM28 assemble the catalytically-active DNA-PK heterotrimer, which phosphorylates TRIM28 at serine-824, enabling recruitment of CDK9, which phosphorylates serine-2 of the Pol II large subunit C-terminal domain and the negative elongation factor to release paused Pol II, thereby stimulating productive transcriptional elongation. Our studies have revealed a critical molecular mechanism by which HIF-1 stimulates gene transcription and suggest that the anticancer effects of drugs targeting DNA-PK in breast cancer may be due in part to their inhibition of HIF-dependent transcription.
Project description:Macrophages (MФ) skewn towards a regulatory-like phenotype are known to promote tumor progression. They tend to accumulate in hypoxic tumor areas and activate hypoxia-inducible factors (HIF-1 and HIF-2). HIFs are known to alter the gene expression profile of MФ. To define direct HIF-1 and HIF-2 target genes in hypoxic and IL-10 treated human MФ we used chromatin immuno-precipitation-sequencing (ChIP-seq) and microarray analysis on a genome-wide scale.
Project description:Intestinal epithelia exist in a uniquely dynamic oxygen tension microenvironment. Adaptive responses to hypoxia in mammalian cells are regulated largely by hypoxia inducible factor (HIF) transcriptional complexes. Functional HIF exists as an obligate alpha/beta heterodimer, comprising both a constitutive subunit (HIF-1beta), and an oxygen-labile regulatory (alpha) component. To date, three regulatory subunits have been identified, namely HIF-1alpha, HIF-2alpha, and HIF-3alpha, with the highest level of sequence homology conserved between HIF-1alpha and HIF-2alpha. Despite their concurrent expression in intestinal epithelial cells, HIF-1 and HIF-2 play non-redundant roles in the regulation of an overlapping but distinct set of gene targets. In this study, we performed ChIP-on-chip analysis of chromatin isolated from hypoxic intestinal epithelia to delineate HIF-1 and HIF-2 specific loci. Comparison of HIF-1alpha ChIP-chip and HIF-2alpha ChIP-chip to map HIF-1- and HIF-2-specific gene targets across the genome.
Project description:Hypoxia is a common feature of many solid tumors due to aberrant proliferation and angiogenesis that is associated with tumor progression and metastasis. Most of the well-known hypoxia effects are mediated through hypoxia-inducible factors (HIFs). Identification of the long-lasting effects of hypoxia beyond the immediate HIF-induced alterations could provide a better understanding of hypoxia-driven metastasis and potential strategies to circumvent it. Here, we uncovered a hypoxia-induced mechanism that exerts a prolonged effect to promote metastasis. In breast cancer patient-derived circulating tumor cell (CTC) lines and common breast cancer cell lines, hypoxia downregulated tumor intrinsic type I interferon (IFN) signaling and its downstream antigen presentation (AP) machinery in luminal breast cancer cells, via both HIF-dependent and HIF-independent mechanisms. Hypoxia induced durable IFN/AP suppression in certain cell types that was sustained after returning to normoxic conditions, presenting a “hypoxic memory” phenotype. Hypoxic memory of IFN/AP downregulation was established by specific hypoxic priming, and cells with hypoxic memory had an enhanced ability for tumorigenesis and metastasis. Overexpression of IRF3 enhanced IFN signaling and reduced tumor growth in normoxic, but not hypoxic, conditions. The histone deacetylase inhibitor (HDACi) entinostat upregulated IFN targets and erased the hypoxic memory. These results point to a mechanism by which hypoxia facilitates tumor progression through a long-lasting memory that provides advantages for CTCs during the metastatic cascade.
Project description:Hypoxia is a common feature of many solid tumors due to aberrant proliferation and angiogenesis that is associated with tumor progression and metastasis. Most of the well-known hypoxia effects are mediated through hypoxia-inducible factors (HIFs). Identification of the long-lasting effects of hypoxia beyond the immediate HIF-induced alterations could provide a better understanding of hypoxia-driven metastasis and potential strategies to circumvent it. Here, we uncovered a hypoxia-induced mechanism that exerts a prolonged effect to promote metastasis. In breast cancer patient-derived circulating tumor cell (CTC) lines and common breast cancer cell lines, hypoxia downregulated tumor intrinsic type I interferon (IFN) signaling and its downstream antigen presentation (AP) machinery in luminal breast cancer cells, via both HIF-dependent and HIF-independent mechanisms. Hypoxia induced durable IFN/AP suppression in certain cell types that was sustained after returning to normoxic conditions, presenting a “hypoxic memory” phenotype. Hypoxic memory of IFN/AP downregulation was established by specific hypoxic priming, and cells with hypoxic memory had an enhanced ability for tumorigenesis and metastasis. Overexpression of IRF3 enhanced IFN signaling and reduced tumor growth in normoxic, but not hypoxic, conditions. The histone deacetylase inhibitor (HDACi) entinostat upregulated IFN targets and erased the hypoxic memory. These results point to a mechanism by which hypoxia facilitates tumor progression through a long-lasting memory that provides advantages for CTCs during the metastatic cascade.