Project description:Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are important bacterial pathogens of the worldwide staple and grass model, rice. Xoo invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice throughout the world. Xoc colonizes the parenchyma tissue to cause bacterial leaf steak, a disease of emerging importance. We have designed oligonucleotide probes (50-70-mers) represented 2,858 Xoo genes and 1,816 Xoc genes annotated by The Institute for Genomic Research (TIGR). To validate the Xo arrays, self-hybridization samples and tests of the non-specific hybridization using randomly spotted oligonucleotides corresponding to the hygromycin phosphotransferase gene (hph), and blank spot and of the correlation coefficient between biological replicates as well as between duplicate spots revealed that the data generated from our oligo array were highly reliable and consistent. To demonstrate application of Xo array, we performed expression profiling experiments on arrays hybridized with RNA of Xoo and Xoc grown in the two different nutrient-condition media. Several sets of genes involved in bacterial movement, chemotaxis, and hrp genes differentially express in response to different treatment. Due to comprehensive views of microarray study, extended biological events of plant-bacteria interaction was described. This publicly available microarray for Xanthomonas oryzae (Xo) is an enabling resource for a large and international community of scientists to better understand not only Xo biology but also many other Xanthomonas species that cause significant losses on crops. Keywords: Media condition response
Project description:Coral disease is one of the major causes of reef degradation and therefore of concern to management and conservation efforts. Dark Spot Syndrome (DSS) was described in the early 1990’s as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease, since they can also be caused by physical injury in some species. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two geographic locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies with normal pigmentation and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip™ G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, however the amplicon pools were overwhelmed by coral 18S rRNA genes from S. siderea. Unlike a similar study on a white-plague-like disease, S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the healthy scleractinian coral S. siderea. 17 samples, coral tissue punches from healthy and also from dark-spot-affected Siderastrea Siderea coral in the Virgin Islands and the Dry Tortugas National Parks was collected for comparison of associated bacterial communities
Project description:Coral disease is one of the major causes of reef degradation and therefore of concern to management and conservation efforts. Dark Spot Syndrome (DSS) was described in the early 1990’s as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease, since they can also be caused by physical injury in some species. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two geographic locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies with normal pigmentation and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip™ G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, however the amplicon pools were overwhelmed by coral 18S rRNA genes from S. siderea. Unlike a similar study on a white-plague-like disease, S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the healthy scleractinian coral S. siderea.
Project description:Exploring the genetic makeup of Xanthomonas species causing Bacterial Spot in Taiwan: evidence of population shift and local adaptation
Project description:Mango bacterial leaf spot, which is caused by Xanthomonas critis pv. mangiferaeindicae (Xcm), poses a great threat to the development of mango planting industry.This work is the first to study the changes in gene and protein expressions in mango during Xcm infection. Our findings will provide new ideas for MBLS resistance and valuable genetic resources for the breeding of MBLS-resistant mango.
Project description:We have used the citrus GeneChip array (GPL5731) to survey the transcription profiles of sweet orange in response to the bacterial pathogens Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas axonopodis pv. aurantifolii (Xaa). Xac is the causal agent of the citrus canker disease on a wide range of citrus species, including sweet oranges (Citrus sinensis). On the other hand, Xaa is pathogenic to Mexican lime (Citrus aurantifolia) only, and in sweet orange it triggers a defense response. In order to identify the genes induced during the defense response (Xaa-responsive genes) or citrus canker development (Xac-responsive genes), we conducted microarrays hybridization experiments at 6 and 48 hours after bacterial infiltration (habi). The analysis revealed that genes commonly modulated by Xac and Xaa are associated with basal defenses normally triggered by pathogen-associated molecular patterns, including those involved in reactive oxygen species production and lignification. Significantly, Xac-infected leaves showed considerable changes in the transcriptional profiles of defense-, cell wall-, vesicle trafficking- and cell growth-related genes between 6 and 48 habi. This is consistent with the notion that Xac suppresses host defenses near the beginning of the infection and simultaneously changes the physiological status of the host to promote cell enlargement and division. Finally, Xaa triggered a MAP kinase signaling pathway involving WRKY and ethylene-responsive transcriptional factors known to activate downstream defense genes. Keywords: Comprehensive transcriptional analysis of the Citrus-Xanthomonas interaction Adult leaves of sweet orange were infiltrated with the bacterial suspensions or water (mock control). Two stages were selected after bacterial infiltration for RNA extraction and hybridization on Affymetrix microarrays. In total, these experiments consist of two biological replicates of six samples: water-infiltrated leaves, Xaa-infiltrated leaves and Xac-infiltrated leaves, at both 6 and 48 (habi).
Project description:We performed RNA-Seq of leaves of Oryza sativa L. ssp. japonica cv. Nipponbare 48 hours after inoculation with Xanthomonas oryzae pv. oryzicola strain BLS354, the causal agent of bacterial leaf streak. Results provide insight into the molecular basis of bacterial leaf streak, particularly the role of transcription activator-like effectors in the disease. Examination of mRNA levels in Oryza sativa L. ssp. japonica cv. Nipponbare leaves at 48 hours after inoculation with Xanthomonas oryzae pv. oryzicola strain BLS354 with three biological replicates compared to three replicates of mock inoculated O. sativa as the control.
Project description:Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are important bacterial pathogens of the worldwide staple and grass model, rice. Xoo invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice throughout the world. Xoc colonizes the parenchyma tissue to cause bacterial leaf steak, a disease of emerging importance. We have designed oligonucleotide probes (50-70-mers) represented 2,858 Xoo genes and 1,816 Xoc genes annotated by The Institute for Genomic Research (TIGR). To validate the Xo arrays, self-hybridization samples and tests of the non-specific hybridization using randomly spotted oligonucleotides corresponding to the hygromycin phosphotransferase gene (hph), and blank spot and of the correlation coefficient between biological replicates as well as between duplicate spots revealed that the data generated from our oligo array were highly reliable and consistent. To optimize the suitable protocol for hybridizing sample onto XOarray slides, we performed hybridization with 4 temperature levels (42 0C, 44 0C, 48 0C, and 52 0C) and 5 numbers of template amounts (10 pMol, 20 pMol, 30 pMol, 40 pMol, and 50 pMol) for hybridization process. Two level of PMT (Power of the scanner photomultiplicator) exposed to hybridized glass slides. Total samples is 36 slides (4 temperatures x 2 technical replicates x 2 PMT level = 16 slides and 5 numbers of template amount x 2 technical replicates x 2 PMT level = 20 slides). Keywords: Condition Optimization
2008-02-08 | GSE9643 | GEO
Project description:Draft Genome Sequences of Xanthomonas Strains associated with bacterial spot disease in Turkey