Project description:Plants adjust their growth in response to environmental cues by forming new organs in different development contexts. Underground lateral roots initiate from prepatterned cells in the main root, but cells can also bypass the root/shoot trajectory separation and generate shoot-borne-roots through an unknown mechanism. Here, we mapped tomato (Solanum lycoperiscum) shoot-borne-roots development at single-cell resolution and show that they initiate from differentiated phloem-associated cells via a unique transitional stem-cell-like state. This state required the activity of a transcription factor which we named SHOOTBORNE ROOTLESS (SBRL), a function that was deeply conserved in angiosperms. Phylogenetic analysis revealed that SBRL arose in angiosperms as an ancient duplicated superlocus with its paralogs showing root-type-specific transient expression in wound-induced and lateral root initiation. Mutants in all SBRL-like genes completely lost post-embryonic roots. We propose that the activation of a common transition state by context-specific regulators underlies the plasticity of plant root systems.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Bacillus thuringiensis, a well-known and effective bio-insecticide, has attracted considerable attention as a potential biological control agent for the suppression of plant diseases. Treatment of tomato roots with a filter-sterilized cell-free filtrate (CF) of B. thuringiensis systemically suppresses bacterial wilt caused by Ralstonia solanacearum through systemic activation of the plant defense system. Comparative analysis of the expression of the Pathogenesis-Related 1(P6) [PR-1(P6)] gene, a marker for induced resistance to pathogens, in various tissues of tomato plants treated with CF on their roots suggested that the B. thuringiensis-induced defense system was activated in the leaf, stem, and main root tissues, but not in the lateral root tissue. At the same time, the growth of R. solanacearum was significantly suppressed in the CF-treated main root tissue but not in the CF-treated lateral root tissue. This distinct activation of the defense reaction and suppression of R. solanacearum were reflected by the differences in the transcriptional profiles of the main and lateral tissues in response to the CF. In the CF-treated main root tissue, but not CF-treated lateral root tissue, the expression of several salicylic acid (SA)-responsive defense-related genes was specifically induced, whereas jasmonic acid (JA)-related gene expression was either down-regulated or not induced in response to the CF. On the other hand, genes encoding ethylene (ET)-related proteins were induced equally in both the main and lateral root tissues. Taken together, the co-activation of SA-dependent signaling pathway with ET-dependent signaling pathway and suppression of JA-dependent signaling pathway may play key roles in B. thuringiensis-induced resistance to R. solanacearum in tomato plants.
Project description:Bacillus thuringiensis, a well-known and effective bio-insecticide, has attracted considerable attention as a potential biological control agent for the suppression of plant diseases. Treatment of tomato roots with a filter-sterilized cell-free filtrate (CF) of B. thuringiensis systemically suppresses bacterial wilt caused by Ralstonia solanacearum through systemic activation of the plant defense system. Comparative analysis of the expression of the Pathogenesis-Related 1(P6) [PR-1(P6)] gene, a marker for induced resistance to pathogens, in various tissues of tomato plants treated with CF on their roots suggested that the B. thuringiensis-induced defense system was activated in the leaf, stem, and main root tissues, but not in the lateral root tissue. At the same time, the growth of R. solanacearum was significantly suppressed in the CF-treated main root tissue but not in the CF-treated lateral root tissue. This distinct activation of the defense reaction and suppression of R. solanacearum were reflected by the differences in the transcriptional profiles of the main and lateral tissues in response to the CF. In the CF-treated main root tissue, but not CF-treated lateral root tissue, the expression of several salicylic acid (SA)-responsive defense-related genes was specifically induced, whereas jasmonic acid (JA)-related gene expression was either down-regulated or not induced in response to the CF. On the other hand, genes encoding ethylene (ET)-related proteins were induced equally in both the main and lateral root tissues. Taken together, the co-activation of SA-dependent signaling pathway with ET-dependent signaling pathway and suppression of JA-dependent signaling pathway may play key roles in B. thuringiensis-induced resistance to R. solanacearum in tomato plants. Gene expression was measured in main and lateral root tissues of tomato treated with Bacillus thuringiensis or distilled water-treated control at 48 hours after treatment. Two independent experiments were performed at each tissue (main root or lateral root tissue) for each treatment (Bacillus thuringiensis or distilled water control).
Project description:The aim of study is to investigate DEGs, long non-coding RNAs and alternative splicing events in the development of galls and neighboring region compared to the non-infected whole root induced by root-knot nematode (RKN, Meloidogyne incognita). Total RNA was extracted, ribosomal depleted libraries were prepared, and then high throughput RNA sequencing was performed using the Illumina NovaSeq 6000. High quality, paired-end reads were then aligned to the tomato reference genome (Heinz1706 assembly SL4.0) and uniquely mapped reads were counted using Htseq. Finally, differentially expressed genes (DEGs) between whole roots-galls and whole roots-neighboring region were identified using DESeq package and downstream analyses were performed.
Project description:Beneficial plant-microorganism interactions are widespread in nature. Among them, the symbiosis between plant roots and arbuscular mycorrhizal fungi (AMF) is of major importance, commonly improving host nutrition and tolerance against environmental and biotic challenges. Metabolic changes were observed in a well-established symbiosis between tomato and two common AMF: Rhizophagus irregularis and Funneliformis mosseae. Principal component analysis of metabolites, determined by non-targeted liquid chromatography-mass spectrometry, showed a strong metabolic rearrangement in mycorrhizal roots. There was generally a negative impact of mycorrhizal symbiosis on amino acid content, mainly on those involved in the biosynthesis of phenylpropanoids. On the other hand, many intermediaries in amino acid and sugar metabolism and the oxylipin pathway were among the compounds accumulating more in mycorrhizal roots. The metabolic reprogramming also affected other pathways in the secondary metabolism, mainly phenyl alcohols (lignins and lignans) and vitamins. The results showed that source metabolites of these pathways decreased in mycorrhizal roots, whilst the products derived from α-linolenic and amino acids presented higher concentrations in AMF-colonized roots. Mycorrhization therefore increased the flux into those pathways. Venn-diagram analysis showed that there are many induced signals shared by both mycorrhizal interactions, pointing to general mycorrhiza-associated changes in the tomato metabolome. Moreover, fungus-specific fingerprints were also found, suggesting that specific molecular alterations may underlie the reported functional diversity of the symbiosis. Since most positively regulated pathways were related to stress response mechanisms, their potential contribution to improved host stress tolerance is discussed.
Project description:Sl2183 is an updated version of the previous tomato metabolic model (iHY3410), with additional reactions and metabolites, IDs converted into the BiGG nomenclature and biomass reactions for leaf, stem and root, allowing to generate a multi-organ model (see Gerlin et al., Plant Physiol. for additional information).