Project description:Tail fat in sheep (Ovis aries), has evolved mainly in response to cold weather for better energy storage. As things stand, too much tail fat in sheep can lead to a reduction in feed utilisation and is also unpopular with consumers due to the excessive fat content in the tail of sheep. Therefore, the need to find the mechanism of tail fat formation is obvious. In this study, we elected to utilise Kazakh sheep, prolific Suffolk sheep, and their hybrid F2 generation as research objects. Sheep transcriptome sequencing technology was employed to screen and explore target candidate genes related to sheep tail fat deposition. Comparison with RNA-seq data from fat-tailed and thin-tailed tissue, the LncRNA-mRNA-miRNA axis was identified as main functional pathway in the formation of fat in tail. Our results offer valuable insights into the fat deposition of sheep and provide a significant genomic resource for future genetic studies and the enhancement of genome-assisted breeding in sheep and other domestic animals.
Project description:In this study, we selected differentially expressed miRNAs through construcing and analyzing the miRNA expression profile during 2-, 6-, and 12- month-old Small Tail Han Sheep ovaries, which provided a theoretical basis for the study of miRNAs regulating the reproduction of Small Tail Han Sheep. RNASeq techniques were used to perform profile analysis for these ovaries. The results showed that 11, 13 and 19 DE miRNAs were identified in 2- vs 6-, 6- vs 12-, and 2- vs 12-month-old ovaries, respectively. In total, 54, 37, and 198 predicted target genes of DE miRNAs were obtained from these three groups, respectively. GO and KEGG analyses showed that, in 2- vs 6-month-olds, the target genes of DE known sheep miRNAs were involved in 102 GO terms and 7 signaling pathways; in 6- vs 12-month-olds, the target genes of DE known sheep miRNAs were involved in 52 GO terms and 3 signaling pathways; and in 2- vs 12-month-olds, the target genes of DE known sheep miRNAs were involved in 88 GO terms and 6 signaling pathways. Three miR–target regulatory networks were constructed based on these DE miRNA–targets. 9 miRNAs were selected to validate the accuracy of miRNA sequencing data by qRT-PCR. The binding sites of oar-miR-432 with RPS6KA1 was validated by a dual luciferase reporter gene detection system. This is the first integrative analysis of miRNA and mRNA expression profiles in Small Tail Han Sheep ovarian development. These data help elucidate the molecular regulatory mechanisms in sheep ovarian development and identify the biomarkers that influence reproductive performance of Small Tail Han Sheep ewe.
Project description:An essential tissue involved in the development and regulation of lipid metabolism in animals is adipose tissue. The “fat-tail” can supply energy for sheep during migration and winter when a low amount of dry matter intake is available. Tail fat content affects meat quality and varies significantly among the different breeds of sheep. Ghezel (fat-tailed) and Zel (thin-tailed) are two important local Iranian sheep breeds that show different patterns of fat storage. The current study presents the transcriptome characterization of tail fat using RNA-sequencing in order to get a better comprehension of the molecular mechanism of lipid storage in the two sheep breeds. The results of sequencing were analyzed with bioinformatics methods, including differentially expressed genes (DEGs) identification, functional enrichment analysis, structural classification of proteins, protein–protein interaction (PPI), network analysis and module analysis. The results revealed a total of332 DEGs between the Zel and Ghezel breed, with78 up-regulated and 254 down-regulated DEGs in the Zel breed. Identification of differential genes showed that some DEGs, such as IL-6, LIPG, SAA1, SOCS3 and HIF-1α, with the largest fold change had close association with lipid deposition. Also, important lipid storage genes such as FASN and SCPEP1 had high levels of expression. Furthermore, functional enrichment analysis revealed some pathways associated with fat deposition, such as “Fatty acid metabolism”, “Fatty acid biosynthesis” and“HIF-1 signaling pathway”. In addition, structural classification of proteins showed major DEGs in transcription factor classes such as JUNB, NR4A3, FOSL1, MAFF, NR4A1, CREB3L1 and ATF3 were up-regulated in the Zel breed. IL-6, JUNB, and related DEGs were up-regulated in the PPI network.HMGCS1, SUCLA2 and STT3B and related DEGs were down-regulated in the PPI network and had high topology scores as hub genes. This implies the DEGs of these modules are important candidate genes for tail fat metabolism and, therefore, can be further studied.
Project description:An essential tissue involved in the development and regulation of lipid metabolism in animals is adipose tissue. The “fat-tail” can supply energy for sheep during migration and winter when a low amount of dry matter intake is available. Tail fat content affects meat quality and varies significantly among the different breeds of sheep. Ghezel (fat-tailed) and Zel (thin-tailed) are two important local Iranian sheep breeds that show different patterns of fat storage. The current study presents the transcriptome characterization of tail fat using RNA-sequencing in order to get a better comprehension of the molecular mechanism of lipid storage in the two sheep breeds. The results of sequencing were analyzed with bioinformatics methods, including differentially expressed genes (DEGs) identification, functional enrichment analysis, structural classification of proteins, protein–protein interaction (PPI), network analysis and module analysis. The results revealed a total of332 DEGs between the Zel and Ghezel breed, with78 up-regulated and 254 down-regulated DEGs in the Zel breed. Identification of differential genes showed that some DEGs, such as IL-6, LIPG, SAA1, SOCS3 and HIF-1α, with the largest fold change had close association with lipid deposition. Also, important lipid storage genes such as FASN and SCPEP1 had high levels of expression. Furthermore, functional enrichment analysis revealed some pathways associated with fat deposition, such as “Fatty acid metabolism”, “Fatty acid biosynthesis” and“HIF-1 signaling pathway”. In addition, structural classification of proteins showed major DEGs in transcription factor classes such as JUNB, NR4A3, FOSL1, MAFF, NR4A1, CREB3L1 and ATF3 were up-regulated in the Zel breed. IL-6, JUNB, and related DEGs were up-regulated in the PPI network.HMGCS1, SUCLA2 and STT3B and related DEGs were down-regulated in the PPI network and had high topology scores as hub genes. This implies the DEGs of these modules are important candidate genes for tail fat metabolism and, therefore, can be further studied.
Project description:Chinese indigenous sheep can be classified into two types according to their tail morphology: fat-rumped and thin-tailed sheep, of which the typical breeds are Altay sheep and Tibetan sheep, respectively. To identify the differentially expressed proteins (DEPs) underlying the phenotypic differences between tail types, we used iTRAQ combined with multi-dimensional liquid chromatography tandem mass spectrometry (LC-MS/MS) technology to detect candidate proteins. We then subjected these to a database search, and identified the DEPs. Finally, bioinformatics technology was used to carry out GO functional and KEGG pathway analyses. A total of 3248 proteins were identified, of which 44 were up-regulated and 40 were down-regulated DEPs. Analyzing their GO function terms and KEGG pathways revealed that the functions of these DEPs are mainly binding, catalytic activity, structural molecule activity, molecular function regulator, and transporter activity. Among the genes encoding the DEPs, APOA2, GALK1, ADIPOQ, and NDUFS4 are associated with fat formation and metabolism.
2022-02-17 | PXD029488 | Pride
Project description:The sequencing data of sheep tail fat
Project description:The semen of Small Tail Han Sheep has characteristics of high yield, high density, and good motility. To reveal the key miRNAs, mRNAs and miR-Targets regulatory mechanisms in Small Tail Han Sheep testes development, integrated analysis of miRNA and mRNA expression profiles in 2-, 6-, and 12-month-old testes were investigated by RNA-seq technology and bioinformatics methods. As the results shown: 630, 102, and 322 differentially expressed (DE) mRNAs; 5, 1 and 4 DE known miRNAs; 132, 105 and 24 DE novel miRNAs were identified in 2- vs 6-month-old, 6- vs 12-month-old, and 2- vs 12-month-old testes, respectively. GO and pathway analysis showed: in 2- vs 6-month-old testes, DE mRNAs were mainly involved in sexual maturation process and the DE mRNAs were mainly involved in multiple metabolism and biosynthesis pathways; in 6- vs 12-month-old testes, DE mRNAs were mainly involved in metabolism and translation processes, and the most significant pathway that DE mRNAs involved in was ribosome pathway; in 2- vs 12-month-old testes, DE mRNAs were mainly involved in metabolism and physiological processes, and DE mRNAs were mainly involved in multiple metabolism and biosynthesis pathways. Subsequently, 76, 11 and 1 DE miR-Targets were identified in 2- vs 6-month-old, 2- vs 12-month-old, and 6- vs 12-month-old testes, respectively. 3 miR-Target regulatory networks were constructed based on these miR-Targets, which helped to elucidate the regulatory metabolism in Small Tail sheep testes development. Finally, 6 miRNAs and 7 mRNAs were selected to validate the RNA-seq data by RT-PCR.
Project description:The fat tail of sheep is an important organ that has evolved to adapt to extreme environmental conditions. Mesenchyme homeobox 2 (MEOX2) can inhibit adipogenic differentiation of stromal vascular fractions (SVFs) isolated from ovine tail adipose tissue. However, the underlying mechanism through which MEOX2 regulates ovine adipogenesis remains unclear. Therefore, this study aims to employ RNA sequencing (RNA-seq) to explore the downstream genes regulated by MEOX2 during the adipogenic differentiation of ovine SVFs. Based on RNA sequencing, several differentially expressed genes (DEGs) were identified in response to MEOX2 overexpression. The PI3K/AKT signaling pathway was significantly enriched in DEGs, indicating its importance in mediating fat accumulation regulated by MEOX2. Additionally, the PI3K/AKT signaling pathway activation was found to be crucial for ovine SVF adipogenic differentiation. Mechanistically, MEOX2 inhibited the PI3K/AKT pathway. These findings highlight the significance of the PI3K/AKT signaling pathway during ovine SVF adipogenic differentiation. Furthermore, they shed light on the involvement of MEOX2 in this differentiation via the PI3K/AKT pathway. Our findings provide novel insights into the critical role of MEOX2 as an adipogenetic differentiation regulator, potentially enhancing our understanding of ovine fat development and its regulatory processes.
2024-10-01 | GSE266851 | GEO
Project description:Molecular Atlas of the Sheep Tail Fat Deposition
Project description:Sheep provide considerable materials for the animal fibre industry. Identifying genes of major effect for wool growth would offer strategies for improving the quality of fine wool. In this study, we employed Agilent Sheep Gene Expression Microarray and proteomic technology to investigate the gene expression patterns of body side skin between Aohan fine wool sheep and small tail Han sheep (two Chinese indigenous breed) at the anagen stage of wool follicle. Several potential gene families might participate in hair growth regulation, including fibroblast growth factors, transforming growth factor-β, WNTs, insulin-like growth factor, vascular endothelial growth factors and so on. Furthermore, according to the results at both mRNA and protein levels, similar regulation mechanism of gene activity might be engaged during skin development and embryo development.