Project description:To elucidate the target genes of ArgR in Aeromonas veronii, we engineered an Aeromonas veronii strain that expresses the ArgR protein fused to a 3× FLAG tag, and FLAG antibodies were employed for the immunoprecipitation of DNA-protein complexes.
Project description:The intestinal epithelial gene responses to Aeromonas veronii infection and the pathogenic mechanisms were investigated by comparative differential expression analysis
Project description:The bacterium Aeromonas veronii is a co-pathogenic species that can negatively impact the health of both humans and aquatic animals. In this study, we used single-cell transcriptome analysis (scRNA-seq) to investigate the effects of infection with A. veronii on head kidney cells and the regulation of gene expression in the dark sleeper (Odontobutis potamophila). scRNA-seq was used to assess the effects of infection with A. veronii in O. potamophila B cells, endothelial cells, macrophages, and granulocytes, and differential enrichment analysis of gene expression in B cells and granulocytes was performed. The analyses revealed a significant increase in neutrophils and decrease in eosinophils in granulocytes infected with A. veronii. Activation of neutrophils enhanced ribosome biogenesis by up-regulating the expression of rps12 and rpl12 to fight against invading pathogens. Crucial pro-inflammatory mediators il1b, ighv1-4, and the major histocompatibility class II genes mhc2a and mhc2dab, which are involved in virulence processes, were up-regulated, suggesting that A. veronii activates an immune response that presents antigens and activates immunoglobulin receptors in B cells. These cellular immune responses triggered by infection with A. veronii enriched the available scRNA-seq data for teleosts, and these results are important for understanding the evolution of cellular immune defense and functional differentiation of head kidney cells.
Project description:In fish, the sex determining mechanisms can broadly be classified as genotypic (GSD), temperature-dependent (TSD), or genotypic plus temperature effects (GSD+TE). For the fish species with TSD or GSD+TE, extremely high or low temperature can affect its sex determination and differentiation. For long time, the underlying changes in DNA methylation that occur during high or low temperature induced sex reversal have not been fully clarified. In this study, we used Nile tilapia as a model to perform a genome-wide survey of differences in DNA methylation in female and male gonads between control and high temperature induced groups using methylated DNA immunoprecipitation (MeDIP). We identified the high temperature induction-related differentially methylated regions (DMRs), and performed functional enrichment analysis for genes exhibiting DMR. These identified differentially methylated genes were potentially involved in the connection between environmental temperature and sex reversal in Nile tilapia. In this study, four samples (control females, CF; control males, CM; induced females, IF; induced males, IM) were analyzed.
Project description:We report an association of DNA hydroxymethylation profiling at single nucleotide resolution with gene expression in the fast muscle of Nile tilapia.
2021-07-27 | GSE158910 | GEO
Project description:RNA-seq TiLV infected Nile tilapia