Project description:Transcriptional profiling of new born mouse kidney collecting duct (CD) cells comparing the infuence of gestational high salt stress on gene expression remolding of BdkrB2 receptor knockout CD cells with that of BdkrB2 receptor wild type CD cells. The BdkrB2 receptor has been shown to be playing a role in renal vascular tone, kidney secretion and reabsorption function, normal kidney development, while impaired BdkrB2 receptor in kidney shown being associated with renal agenesis and renal dysplasia. Goal was to determine the effects of BdkrB2 receptor knockout together with gestational high salt stress on collecting duct gene expression pattern.
Project description:Transcriptional profiling of new born mouse kidney collecting duct (CD) cells comparing the infuence of gestational high salt stress on gene expression remolding of BdkrB2 receptor knockout CD cells with that of BdkrB2 receptor wild type CD cells. The BdkrB2 receptor has been shown to be playing a role in renal vascular tone, kidney secretion and reabsorption function, normal kidney development, while impaired BdkrB2 receptor in kidney shown being associated with renal agenesis and renal dysplasia. Goal was to determine the effects of BdkrB2 receptor knockout together with gestational high salt stress on collecting duct gene expression pattern. Single color microarray experiment, BdkrB2 knockout new born mouse CD cells vs. BdkrB2 WT mosue CD cells with both on gestational high salt stress. Biological replicates: 3 BdkrB2 null replicates, 3 BdkrB2 WT replicates. Expression level of each sample was normalized to WT1 replicate.
Project description:We examined the possible effects of hypertonic stress on Arabidopsis translatome using polysome profiling. We found that the translatome is partly and rapidly reprogrammed in response to hypertonic stress, and such translatome reprogramming is DCP5-dependent.
Project description:Here, establishing expansion cultures of hiPSC-derived ureteric bud tip cells, an embryonic precursor that gives rise to collecting ducts, we succeeded in advancing the developmental stage of collecting duct organoids and showed that all collecting duct organoids derived from PKD1-/- hiPSCs spontaneously develop multiple cysts, clarifying the initiation mechanisms of cystogenesis.
Project description:Analysis of expression changes in renal collecting duct epithelial cells by adenoviral mediated Krüppel like transcription factor 5 (KLF5) overexpression. KLF5 is a key regulator of static and inflammatory stage in renal collecting duct epithelial cells. We thought these results provide insights into downstream genes of KLF5 in renal collecting duct epithelial cells.
Project description:Analysis of collecting duct response to low NaCl or high NaCl diet at the gene expression level. Results provide insight into transcriptional changes in principal and intercalated cells that occur in response to changes in dietary NaCl.
Project description:Vasopressin is the major hormone that regulates renal water excretion. It does so by binding to a receptor in renal collecting duct cells, triggering signaling pathways that ultimately regulate the abundance, location, and activity of the water channel protein aquaporin 2. We took an advantage of quantitative large scale proteomic technologies and oligonucleotide microarrays to quantify steady state changes in protein and transcript abundances in response to vasopressin in a collecting duct cell line, mpkCCD clone 11 (Yu et al. PNAS 2009, 106:2441-2446). This cell line originally developed by Alan Vandewalle’s group recapitulates vasopressin-mediated AQP2 expression and phosphorylation as seen in native colleting duct cells.
Project description:Identification of gene expressed in the enriched inner medullary collecting duct cells in rat. Experiment Overall Design: Rat inner medullary collecting duct (IMCD) cells were isolated from 7 male Sprage-Dawley rats by collagenase and hyaluronidase digestion and follow by low speed centrifugation. The non-IMCD cells were collected by centrifugation of supernatant of enriched IMCD samples. Experiment Overall Design: Total RNA about 3 ug were used per microarray (Rat 230 2.0 Genechip array). Experiment Overall Design: The experiments were repeat 3 times (3 pairs of IMCD VS non-IMCD)
Project description:Identification of gene expressed in the enriched inner medullary collecting duct cells in rat. Keywords: gene expression comparision between cell type