Project description:The goals of this study is to identify the differential expressed genes in heart of C57BL/6 mice with or without LPS treatment, and compare the differential expressed genes in the heart of LPS injection C57BL/6 mice after Xijiao Dihuang decoction(XJDHT) treatment. Briefly, the mice were randomly divided into 3 groups: control, LPS and LPS + XJDHT groups (n=4 for each group). Mice in Control and LPS groups were intraperitoneal injection with saline and 10mg/kg of LPS respectively, and orally administrated with saline; the mice in LPS + XJDHT groups were intraperitoneal injection with LPS (10 mg/kg) and orally administrated with 50 mg/kg /day of XJDHT for total 3 days. Then the heart were used to identify differentially expressed genes among different groups.
Project description:Influenza A viruses (IAVs), particularly H1N1, H5N1 and H7N9, pose a substantial threat to public health worldwide. Here, we report that MIR2911, a honeysuckle (HS)-encoded atypical microRNA, directly targets IAVs with a broad spectrum. MIR2911 is highly stable in HS decoction, and continuous drinking or gavage feeding of HS decoction leads to a significant elevation of the MIR2911 level in mouse peripheral blood and lung. Bioinformatics prediction and a luciferase reporter assay showed that MIR2911 could target various IAVs, including H1N1, H5N1 and H7N9. Synthetic MIR2911 significantly inhibited H1N1-encoded PB2 and NS1 protein expression but did not affect mutants in which the MIR2911-binding nucleotide sequences were altered. Synthetic MIR2911, extracted RNA from HS decoction and HS decoction all significantly inhibited H1N1 viral replication and improved viral infection-induced mouse weight loss but did not affect infection with a mutant virus in which the MIR2911-binding nucleotide sequences of PB2 and NS1 were altered. Importantly, the inhibitory effect of HS decoction on viral replication was abolished by an anti-MIR2911 antagomir, indicating that the physiological concentration of MIR2911 in HS decoction could directly and sufficiently suppress H1N1 viral replication. MIR2911 also inhibited H5N1 and H7N9 viral replication in vitro and in vivo. Strikingly, administration of MIR2911 or HS decoction both dramatically reduced mouse mortality caused by H5N1 infection. Our results demonstrate that MIR2911 is the first active component identified in Traditional Chinese Medicine to directly target various IAVs and may represent a novel type of natural product that effectively suppresses viral infection. Screening and profiling of known plant microRNA in HS and HS decoction
Project description:Asari Radix et Rhizoma (ARR) is an important traditional Chinese medicine. Volatile organic compounds (VOCs) are the main active constituents of ARR. Research on the metabolite profile of VOCs and the difference of absorbed constituents in vivo after an administration of ARR decoction and powder will be helpful to understand the pharmacological activity and safety of ARR. In this study, headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) was applied to profile the VOCs from ARR in rats in vivo. A total of 153 VOCs were tentatively identified; 101 were original constituents of ARR (98 in the powder-treated group and 43 in the decoction-treated group) and 15 were metabolites, and their metabolic reactions were mainly oxidation and reduction, with only two cases of methylation and esterification, and 37 unclassified compounds were identified only in the ARR-treated group. Of the 153 VOCs identified, 131 were reported in rats after oral administration of ARR for the first time, containing 79 original constituents, 15 metabolites, and 37 unclassified compounds. In the powder-treated group, methyleugenol, safrole, 3,5-dimethoxytoluene (3,5-DMT), 2,3,5-trimethoxytoluene (2,3,5-TMT), and 3,4,5-trimethoxytoluene (3,4,5-TMT) were the main absorbed constituents, the relative contents of which were significantly higher compared to the decoction-treated group, especially methyleugenol, safrole, and 3,5-DMT. In the decoction-treated group, 3,4,5-TMT, 2,3,5-TMT, kakuol, and eugenol were the main constituents with a higher content and wider distribution. The results of this study provide a reference for evaluating the efficacy and safety of ARR.
Project description:Enterotoxin-producing C. perfringens type A is a common cause of food poisonings. The cpe encoding the enterotoxin can be chromosomal (genotype IS1470) or plasmid-borne (genotypes IS1470-like-cpe or IS1151-cpe). The chromosomal cpe-carrying C. perfringens are a more common cause of food poisonings than plasmid-borne cpe-genotypes. The chromosomal cpe-carrying C. perfringens type A strains are generally more resistant to most food-processing conditions than plasmid-borne cpe-carrying strains. On the other hand, the plasmid-borne cpe-positive genotypes are more commonly found in human feces than chromosomal cpe-positive genotypes, and humans seem to be a reservoir for plasmid-borne cpe-carrying strains. Thus, it is possible that the epidemiology of C. perfringes type A food poisonings caused by plasmid-borne and chromosomal cpe-carrying strains is different. A DNA microarray was designed for analysis of genetic relatedness between the different cpe-positive and cpe-negative genotypes of C. perfringens strains isolated from human, animal, environmental and food samples. The DNA microarray contained two probes for all protein-coding sequences in the three genome-sequenced strains (C. perfringens type A strains 13, ATCC13124, and SM101). The chromosomal and plasmid-borne C. perfringens genotypes were grouped into two distinct clusters, one consisting of the chromosomal cpe-genotypes and the other consisting of plasmid-borne cpe-genotypes. Analysis of the variable gene pool complemented with the growth studies demonstrate different carbohydrate and amine metabolism in the chromosomal and plasmid-borne cpe-carrying strains, suggesting different epidemiology of the cpe-positive C. perfringens strain groups.
Project description:Influenza A viruses (IAVs), particularly H1N1, H5N1 and H7N9, pose a substantial threat to public health worldwide. Here, we report that MIR2911, a honeysuckle (HS)-encoded atypical microRNA, directly targets IAVs with a broad spectrum. MIR2911 is highly stable in HS decoction, and continuous drinking or gavage feeding of HS decoction leads to a significant elevation of the MIR2911 level in mouse peripheral blood and lung. Bioinformatics prediction and a luciferase reporter assay showed that MIR2911 could target various IAVs, including H1N1, H5N1 and H7N9. Synthetic MIR2911 significantly inhibited H1N1-encoded PB2 and NS1 protein expression but did not affect mutants in which the MIR2911-binding nucleotide sequences were altered. Synthetic MIR2911, extracted RNA from HS decoction and HS decoction all significantly inhibited H1N1 viral replication and improved viral infection-induced mouse weight loss but did not affect infection with a mutant virus in which the MIR2911-binding nucleotide sequences of PB2 and NS1 were altered. Importantly, the inhibitory effect of HS decoction on viral replication was abolished by an anti-MIR2911 antagomir, indicating that the physiological concentration of MIR2911 in HS decoction could directly and sufficiently suppress H1N1 viral replication. MIR2911 also inhibited H5N1 and H7N9 viral replication in vitro and in vivo. Strikingly, administration of MIR2911 or HS decoction both dramatically reduced mouse mortality caused by H5N1 infection. Our results demonstrate that MIR2911 is the first active component identified in Traditional Chinese Medicine to directly target various IAVs and may represent a novel type of natural product that effectively suppresses viral infection.
Project description:MicroRNAs (miRNAs) are small non-coding RNAs between 18-23nts in size which regulate the translation and stability of target mRNAs. miRNAs are present in dietary plants and are conventionally thought to be degraded during the gastrointestinal digestion process. Recent reports suggest that a few dietary microRNAs may exhibit resistance to this process, enter systemic circulation and exert biological effects on animal physiology, currently known as cross-kingdom regulation. However, such horizontal transfer of miRNAs via different kingdoms is highly likely for miRNAs that are present intrinsic extracellular vesicles which increases their bioavailability. These vesicular structures from plants are known as Exosome-like nanovesicles (ENV). ENVs have been isolated from several edible plants. ENV-derived miRNAs are probably more bioavailable and are spontaneously absorbed in intestinal epithelium to suppress target transcripts in human/microbial/viral kingdoms. Such cross-kingdom regulation exhibited by ENV-miRNAs, if properly investigated and validated, may aid in the development of non-toxic and cost-effective therapeutics to treat human diseases. In this line, we purified ENVs from four edible plants (Soy bean, ginger, amla and turmeric). Small RNA population from these ENVs were isolated and profiled through small RNA sequencing to identify ENV-associated miRNAs enriched in each species.
Project description:This study will take progression-free survival and overall survival as the main evaluation indexes, to evaluate the Efficacy of Jianpi Huatan Decoction in the Treatment of Advanced Colorectal Cancer. Decision Trees and Discriminant Analysis will be used to analyze the characteristics of dominant population combined with clinical data of patients. DNA methylation of the subjects will be detected to study the methylation characteristics of the preponderant population of Jianpi Huatan Decoction.
Project description:We aimed to investigate the syndrome of Sini decoction pattern. The Sini decoction was first mentioned in Shang Han Za Bing Lun, then was developed into Sini decoction pattern (SDP) by Sun Simiao’s Qian Jin Yi Fang. The syndromes of SDP were correlated with various extremely Yang deficiency related symptoms, but there does not exist common definition.
2015-03-20 | GSE67090 | GEO
Project description:animal and food-borne micro-organisms Genome sequencing and assembly