Project description:The formation of tertiary lymphoid structures (TLSs) in human cancer patients is significantly correlated with prolonged survival, better prognosis, and improved responses to immune checkpoint therapy. We generated mouse models to investigate TLS formation using the KxPxCx pancreatic cancer model
Project description:The formation of tertiary lymphoid structures (TLSs) in tumors is significantly correlated with prolonged patient survival, better prognosis, and improved response to immunotherapy. Understanding the tumor microenvironments involved in TLS formation is crucial. This bulk RNA sequencing study utilized archived FFPE samples from PDAC patients to reveal gene expression profiles in tumors with TLS formation.
Project description:Ovarian cancer is insensitive to immunotherapy and has a high mortality rate. CDK4/6 inhibitors (CDK4/6i) regulate the tumor microenvironment and play an antitumor role. Our previous research demonstrated that lymphocyte aggregation (tertiary lymphoid structures, TLS) was observed after CDK4/6i treatment. This may explain the synergistic action of CDK4/6i with the anti-PD1 antibody. However, the key mechanism by which CDK4/6i promotes TLS formation has not been elucidated. We examine the link between TLS and prognosis. Animal models and high-throughput sequencing were used to explore the potential mechanism by which CDK4/6i promotes TLS formation. Our results showed the presence of TLSs was associated with a favorable prognosis for ovarian cancer. CDK4/6i promoted TLS formation and enhanced the immunotherapeutic effect of the anti-PD1 antibody. The potential mechanism of CDK4/6i affecting the formation of TLS may be through modulating SCD1 and its regulatory molecules ATF3 and CCL4. Our findings provide a theoretical basis for the application of CDK4/6i in ovarian cancer.
Project description:Pancreatic adenocarcinoma (PDAC) is a rapidly progressing cancer that responds poorly to immunotherapies. Intratumoral tertiary lymphoid structures (TLS) have been associated with rare long-term PDAC survivors, but the role of TLS in PDAC and their spatial relationships within the context of the broader tumor microenvironment remain unknown. Here, we report the generation of a spatial multi-omics atlas of PDAC tumors and tumor-adjacent lymph nodes from patients treated with combination neoadjuvant immunotherapies. Using machine learning–enabled hematoxylin and eosin image classification models, imaging mass cytometry, and unsupervised gene expression matrix factorization methods for spatial transcriptomics, we characterized cellular states within and adjacent to TLS spanning across distinct spatial niches and pathologic responses. Unsupervised learning identified TLS-specific spatial gene expression signatures that significantly associated with improved survival in PDAC patients. We identified spatial features of pathologic immune responses, including intratumoral TLS–associated B-cell maturation colocalizing with IgG dissemination and extracellular matrix remodeling. Our findings offer insights into the cellular and molecular landscape of TLS in PDACs during immunotherapy treatment.
Project description:The discovery of tertiary lymphoid structures (TLS) within the tumor tissues provides a promising avenue to promote the response rate of cancer immunotherapy. Yet, the lack of effective strategies to promote TLS formation poses a substantial obstacle. Thus, the exploration of potential inducers for TLS formation is of great interest but remains challenging. Here, inspired by the mechanism of artificially cultivated pearls, a covalent organic frameworks (COFs) was employed to promote the formation of TLS. Single-cell sequencing analysis revealed that this was achieved by promoting the cytokine hypersecretion to facilitate the maturation, proliferation, and migration of T and B cells, critical for trigger TLS formation. Furthermore, the high efficacy of COF-mediated phototherapy in inducing TLS formation was validated in both the MC38 and 4MOSC1 tumor models. Moreover, an efficient synergism between COF-mediated phototherapy and αCTLA-4 was observed, which was able to effectively eradicate both primary and distant tumors, and inhibit tumor recurrence. This study underscores a new approach of boosting cancer immunotherapy through COF triggered TLS formation.
Project description:FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS worsened the phenotypes of model mice of Huntington's disease (HD) but not spinal and bulbar muscular atrophy (SBMA). This difference was correlated with the degree of pathological association between disease proteins and FUS/TLS. Co-aggregation between FUS/TLS and mutant huntingtin resulted in the depletion of free FUS/TLS protein in HD mice that was detected as a monomer in SDS-PAGE analysis. Recently, we found that FUS/TLS paralogs, TAF15 and EWS, were up-regulated in homozygous FUS/TLS knockout mice. These two proteins were up-regulated in both HD and FUS/TLS heterozygote mice, and were further elevated in HD-TLS+/- double mutant mice, consistent with the functional impairment of FUS/TLS. These results suggest that FUS/TLS sequestration by co-aggregation is a rate-limiting factor of disease phenotypes of HD and that inclusions may have an adverse aspect, rather than being simply benign or protective. In addition, our results highlight inclusions as repositories of potential modifiers of neurodegeneration. Gene expression profiles were analyzed to examine the effects of FUS/TLS heterozygosity in mouse with or without the transgene of mutant androgen receptor.
Project description:FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS worsened the phenotypes of model mice of Huntington's disease (HD) but not spinal and bulbar muscular atrophy (SBMA). This difference was correlated with the degree of pathological association between disease proteins and FUS/TLS. Co-aggregation between FUS/TLS and mutant huntingtin resulted in the depletion of free FUS/TLS protein in HD mice that was detected as a monomer in SDS-PAGE analysis. Recently, we found that FUS/TLS paralogs, TAF15 and EWS, were up-regulated in homozygous FUS/TLS knockout mice. These two proteins were up-regulated in both HD and FUS/TLS heterozygote mice, and were further elevated in HD-TLS+/- double mutant mice, consistent with the functional impairment of FUS/TLS. These results suggest that FUS/TLS sequestration by co-aggregation is a rate-limiting factor of disease phenotypes of HD and that inclusions may have an adverse aspect, rather than being simply benign or protective. In addition, our results highlight inclusions as repositories of potential modifiers of neurodegeneration. Gene expression profiles were analyzed to examine the effects of FUS/TLS heterozygosity in mouse with or without the transgene of mutant huntingtin exon 1.