Project description:the present provocative data that in addition to the expected progressive age-related involution, mammary gland aging can occur in a cyclical pattern and is dictated by maternal ancestry. In cyclical aging, mammary glands of 11 and 19 months old mice share genetic and proteomic signatures, which are enriched in breast cancer-related pathways, but are absent at 3 and 14 months. Since incidence of breast cancer shows a bimodal age distribution at 45 (~11m in mice) and 65 (~19m in mice) in human populations, cyclical aging may contribute to these peaks of cancer susceptibility. Conversely, since the mammary glands at 3 and 14 months cluster together hierarchically, the cancer-associated peaks seem separated by a rejuvenation phase. Since cyclical aging is observed in mice with extended lifespan, these findings raise the possibility that if oncogenic mutations are avoided during the pro-oncogenic phases, through its rejuvenation phase, cyclical aging may impact multiple organs leading to extended longevity.
Project description:The main goal of this experiment was to contrast the gene expression of mammary gland tissues at three different tumoral stages : M/D-driven mammary gland small tumors vs mammary gland tissues that have been exposed to M/D but they did not develop a tumor (hyperplastic mammary gland) vs mammary gland tissues that were NOT expossed to M/D (normal mammary gland). Expression profile of 18 mice mammary gland tissues at 3 differents neoplastic stages before and after M/D expossure
Project description:Different doses of glucose were inused into dairy goat mammary gland. The mammary gland tissues were biopsied to analyze the changes of transcriptome responding to glucose infusion.
Project description:Identify gene expression changes in the absence of Plk2 Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and is a putative tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development and as a tumor suppressor in mammary tumorigenesis. Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and is a putative tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development and as a tumor suppressor in mammary tumorigenesis.
Project description:RNA from MMTV-Cre;Sox9flox/flox mouse mammary glands were compared to RNA from MMTV-Cre;Sox9+/flox glands. Results indicate that Sox9 regulates several genes that impact ductal morphogenesis in the mammary gland. The portion of the fourth mammary gland that is proximal to the intra-mammary gland lymph nodes was dissected from four 5-week-old MMTV-Cre;Sox9flox/flox females and four MMTV-Cre;Sox9+/flox females of the same age. Total RNA from each gland was extracted and hybridized to separate Affymetrix Gene 1.0 ST chips.
Project description:Identify gene expression changes in the absence of Plk2 Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and is a putative tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development and as a tumor suppressor in mammary tumorigenesis. Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and is a putative tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development and as a tumor suppressor in mammary tumorigenesis. Comparison between Plk2 +/+ (n=3) and Plk2 -/- (n=3) mouse mammary epithelial cells
Project description:miRNAs are not well known their expression and function in mammary gland development. To identify the miRNAs expression during mammary gland development, mammary bud were dissected at E13.5