Project description:Progesterone (P) acting through its cognate nuclear receptors (PRs) plays an essential role in driving pregnancy-associated branching morphogenesis of the mammary gland. However, the fundamental mechanisms, including global cistromic and acute genomic transcriptional responses that are required to elicit active branching morphogenesis in response to P, have not been elucidated. We used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to identify P-regulated genes that directly recruit PRs in the mouse mammary gland after acute P treatment. Two replicate PR ChIP samples and two replicate input DNA control samples from mouse mammary glands after mice are treated subcutaneously with 17?-Estradiol for 24 hours and then 17?-Estradiol plus Progesterone for 6 hours.
Project description:Progesterone (P) acting through its cognate nuclear receptors (PRs) plays an essential role in driving pregnancy-associated branching morphogenesis of the mammary gland. However, the fundamental mechanisms, including global cistromic and acute genomic transcriptional responses that are required to elicit active branching morphogenesis in response to P, have not been elucidated. We used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to identify P-regulated genes that directly recruit PRs in the mouse mammary gland after acute P treatment.
Project description:Single-cell technologies are revolutionizing biology but are today mainly limited to imaging and deep sequencing. However, proteins are the main drivers of cellular function and in-depth characterization of individual cells by mass spectrometry (MS)-based proteomics would thus be highly valuable and complementary. Here, we develop a robust workflow combining miniaturized sample preparation, very low flow-rate chromatography and a novel trapped ion mobility mass spectrometer, resulting in a more than ten-fold improved sensitivity. We precisely and robustly quantify proteomes and their changes in single, FACS-isolated cells. Arresting cells at defined stages of the cell cycle by drug treatment retrieves expected key regulators. Furthermore, it highlights potential novel ones and allows cell phase prediction. Comparing the variability in more than 430 single-cell proteomes to transcriptome data revealed a stable core proteome despite perturbation, while the transcriptome appears stochastic. Our technology can readily be applied to ultra-high sensitivity analyses of tissue material, posttranslational modifications and small molecule studies from small cell counts to gain unprecedented insights into cellular heterogeneity in health and disease.
2022-02-23 | PXD024043 | Pride
Project description:Plastid Evolution in Deep-Branching Apicomplexans
Project description:Kilian2024 - Immune cell dynamics in Cue-Induced Extended Human Colitis Model
Single-cell technologies such as scRNA-seq and flow cytometry provide critical insights into immune cell behavior in inflammatory bowel disease (IBD). However, integrating these datasets into computational models for dynamic analysis remains challenging. Here, Kilian et al., (2024) developed a deterministic ODE-based model that incorporates these technologies to study immune cell population changes in murine colitis. The model parameters were optimized to fit experimental data, ensuring an accurate representation of immune cell behavior over time. It was then validated by comparing simulations with experimental data using Pearson’s correlation and further tested on independent datasets to confirm its robustness. Additionally, the model was applied to clinical bulk RNA-seq data from human IBD patients, providing valuable insights into immune system dynamics and potential therapeutic strategies.
Figure 4c, obtained from the simulation of human colitis model is highlighted here.
This model is described in the article:
Kilian, C., Ulrich, H., Zouboulis, V.A. et al. Longitudinal single-cell data informs deterministic modelling of inflammatory bowel disease. npj Syst Biol Appl 10, 69 (2024). https://doi.org/10.1038/s41540-024-00395-9
Abstract:
Single-cell-based methods such as flow cytometry or single-cell mRNA sequencing (scRNA-seq) allow deep molecular and cellular profiling of immunological processes. Despite their high throughput, however, these measurements represent only a snapshot in time. Here, we explore how longitudinal single-cell-based datasets can be used for deterministic ordinary differential equation (ODE)-based modelling to mechanistically describe immune dynamics. We derived longitudinal changes in cell numbers of colonic cell types during inflammatory bowel disease (IBD) from flow cytometry and scRNA-seq data of murine colitis using ODE-based models. Our mathematical model generalised well across different protocols and experimental techniques, and we hypothesised that the estimated model parameters reflect biological processes. We validated this prediction of cellular turnover rates with KI-67 staining and with gene expression information from the scRNA-seq data not used for model fitting. Finally, we tested the translational relevance of the mathematical model by deconvolution of longitudinal bulk mRNA-sequencing data from a cohort of human IBD patients treated with olamkicept. We found that neutrophil depletion may contribute to IBD patients entering remission. The predictive power of IBD deterministic modelling highlights its potential to advance our understanding of immune dynamics in health and disease.
This model was curated during the Hackathon hosted by BioMed X GmbH in 2024.
Project description:Vestimentiferan tubeworms are representative inhabitants of deep-sea chemosynthetic ecosystems. The plume serves as the primary organ in these invertebrates without mouths and guts, facilitating direct metabolic exchange with their surrounding environments. In this study, we present a single-cell transcriptome atlas of Paraescarpia echinospica plume and this study is the initial single-cell transcriptome sequencing for the plume of the deep-sea tubeworm. We annotated six cell clusters including hemocytes, proliferative cells, muscle cells, epithelial cells, nerve1 cells, nerve2 cells and profiled genes involved in immunity and transport. This work will provide a foundation for further studies of tubeworm at the single-cell level.
Project description:Vestimentiferan tubeworms are representative inhabitants of deep-sea chemosynthetic ecosystems. The plume serves as the primary organ in these invertebrates without mouths and guts, facilitating direct metabolic exchange with their surrounding environments. In this study, we present a single-cell transcriptome atlas of Paraescarpia echinospica plume and this study is the initial single-cell transcriptome sequencing for the plume of the deep-sea tubeworm. We annotated six cell clusters including hemocytes, proliferative cells, muscle cells, epithelial cells, nerve1 cells, nerve2 cells and profiled genes involved in immunity and transport. This work will provide a foundation for further studies of tubeworm at the single-cell level.