Project description:Migratory species experience morphological and physiological changes during transitions between different life stages. In particular, modification of sensory systems is critical for animals to adapt to new environments. For example, to prepare for entry into seawater, salmonids undergo smoltification with dramatic changes in ultraviolet photoreceptors and polarized vision, which are important for orientation and foraging behaviours. Extraretinal organs are also involved in photoreception; however, the ontogenetic development of extraretinal photoreceptors is not well known, especially in migratory species. Here, we investigated whether rainbow trout dermal photoreceptors, melanophores, undergo change in spectral sensitivity during smoltification and which candidate molecules may account for this ontogenetic alteration. Our results showed that, contrary to parr melanophores which are insensitive to light, smolt melanophores displayed chromatic photoresponses with the emergence of cryptochrome and melanopsin expression. We suggest that these modifications may benefit the active foraging behaviour of smolts and enable adaptation to variable environments.
Project description:Diverse animals use Earth's magnetic field in orientation and navigation, but little is known about the molecular mechanisms that underlie magnetoreception. Recent studies have focused on two possibilities: (i) magnetite-based receptors; and (ii) biochemical reactions involving radical pairs. We used RNA sequencing to examine gene expression in the brain of rainbow trout (Oncorhynchus mykiss) after exposure to a magnetic pulse known to disrupt magnetic orientation behaviour. We identified 181 differentially expressed genes, including increased expression of six copies of the frim gene, which encodes a subunit of the universal iron-binding and trafficking protein ferritin. Functions linked to the oxidative effects of free iron (e.g. oxidoreductase activity, transition metal ion binding, mitochondrial oxidative phosphorylation) were also affected. These results are consistent with the hypothesis that a magnetic pulse alters or damages magnetite-based receptors and/or other iron-containing structures, which are subsequently repaired or replaced through processes involving ferritin. Additionally, some genes that function in the development and repair of photoreceptive structures (e.g. crggm3, purp, prl, gcip, crabp1 and pax6) were also differentially expressed, raising the possibility that a magnetic pulse might affect structures and processes unrelated to magnetite-based magnetoreceptors.
Project description:Gene expression profiling of the hyperplastic growth zones of the late trout embryo myotome using laser capture microdissection and microarray analysis.