Project description:Small cell lung cancer (SCLC) is divided into four subtypes based on specific transcription regulators: ASCL1, NEUROD1, POU2F3, and YAP1. Around 80% of SCLC cases show neuroendocrine markers, mainly ASCL1 (called SCLC-A) or NEUROD1 (called SCLC-N). In the past, these four subtypes were thought to be completely separate. However, recent studies have shown that they can change into one another. For example, SCLC-N can develop from SCLC-A. Additionally, ASCL1 and NEUROD1 can sometimes be expressed together, although this combined subtype is not well understood. Our previous research (PMID: 35789143) showed that ASCL1 controls certain microRNAs (miRNAs), which helps keep the subtypes separate. However, the exact way NEUROD1 controls transcription in SCLC, especially when it is co-expressed with ASCL1, is still unknown. To investigate transcriptional regulation, we used Cleavage Under Targets and Tagmentation (CUT&Tag) to confirm the binding sites of ASCL1 and NEUROD1 for double positive cells.
Project description:Small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC) are high-grade pulmonary neuroendocrine tumors. The neural basic helix-loop-helix (bHLH) transcription factors ASCL1 and NEUROD1 have been shown to play crucial roles in promoting the malignant behavior and survival of human SCLC cell lines. In this study, we find ASCL1 and NEUROD1 identify distinct neuroendocrine tumors, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1 and NEUROD1 are often bound in super-enhancers that are associated with highly expressed genes in their respective SCLC cell lines suggesting different cell lineage of origin for these tumors. ASCL1 targets oncogenic genes such as MYCL1, RET, and NFIB, while NEUROD1 targets the oncogenic gene MYC. Although ASCL1 and NEUROD1 regulate different genes, many of these gene targets commonly contribute to neuroendocrine and cell migration function. ASCL1 in particular also regulates genes in the NOTCH pathway and genes important in cell-cycle dynamics. Finally, we demonstrate ASCL1 but not NEUROD1 is required for SCLC and LCNEC tumor formation in current in vivo genetic mouse models of pulmonary neuroendocrine tumors ChIP-seq analysis performed on three ASCL1high and two NEUROD1high human SCLC cell lines to identify ASCL1 and/or NEUROD1 binding sites in these two types of cells. Also, we performed ChIP-seq for Ascl1 binding sites in mouse neuroendocrine lung tumors obtained from Trp53;Rb1;Rbl2 triple knockout model mice treated with Adeno-CMVCRE intratracheally.
Project description:Small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC) are high-grade pulmonary neuroendocrine tumors. The neural basic helix-loop-helix (bHLH) transcription factors ASCL1 and NEUROD1 have been shown to play crucial roles in promoting the malignant behavior and survival of human SCLC cell lines. In this study, we find ASCL1 and NEUROD1 identify distinct neuroendocrine tumors, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1 and NEUROD1 are often bound in super-enhancers that are associated with highly expressed genes in their respective SCLC cell lines suggesting different cell lineage of origin for these tumors. ASCL1 targets oncogenic genes such as MYCL1, RET, and NFIB, while NEUROD1 targets the oncogenic gene MYC. Although ASCL1 and NEUROD1 regulate different genes, many of these gene targets commonly contribute to neuroendocrine and cell migration function. ASCL1 in particular also regulates genes in the NOTCH pathway and genes important in cell-cycle dynamics. Finally, we demonstrate ASCL1 but not NEUROD1 is required for SCLC and LCNEC tumor formation in current in vivo genetic mouse models of pulmonary neuroendocrine tumors RNA-seq analysis performed on two ASCL1high and two NEUROD1high human SCLC cell lines to identify gene expression patterns in these cells. Also, we performed RNA-seq in mouse neuroendocrine lung tumors obtained from Trp53;Rb1;Rbl2 triple knockout model mice treated with Adeno-CMVCRE intratracheally.
Project description:Small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC) are high-grade pulmonary neuroendocrine tumors. The neural basic helix-loop-helix (bHLH) transcription factors ASCL1 and NEUROD1 have been shown to play crucial roles in promoting the malignant behavior and survival of human SCLC cell lines. In this study, we find ASCL1 and NEUROD1 identify distinct neuroendocrine tumors, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1 and NEUROD1 are often bound in super-enhancers that are associated with highly expressed genes in their respective SCLC cell lines suggesting different cell lineage of origin for these tumors. ASCL1 targets oncogenic genes such as MYCL1, RET, and NFIB, while NEUROD1 targets the oncogenic gene MYC. Although ASCL1 and NEUROD1 regulate different genes, many of these gene targets commonly contribute to neuroendocrine and cell migration function. ASCL1 in particular also regulates genes in the NOTCH pathway and genes important in cell-cycle dynamics. Finally, we demonstrate ASCL1 but not NEUROD1 is required for SCLC and LCNEC tumor formation in current in vivo genetic mouse models of pulmonary neuroendocrine tumors
Project description:Small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC) are high-grade pulmonary neuroendocrine tumors. The neural basic helix-loop-helix (bHLH) transcription factors ASCL1 and NEUROD1 have been shown to play crucial roles in promoting the malignant behavior and survival of human SCLC cell lines. In this study, we find ASCL1 and NEUROD1 identify distinct neuroendocrine tumors, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1 and NEUROD1 are often bound in super-enhancers that are associated with highly expressed genes in their respective SCLC cell lines suggesting different cell lineage of origin for these tumors. ASCL1 targets oncogenic genes such as MYCL1, RET, and NFIB, while NEUROD1 targets the oncogenic gene MYC. Although ASCL1 and NEUROD1 regulate different genes, many of these gene targets commonly contribute to neuroendocrine and cell migration function. ASCL1 in particular also regulates genes in the NOTCH pathway and genes important in cell-cycle dynamics. Finally, we demonstrate ASCL1 but not NEUROD1 is required for SCLC and LCNEC tumor formation in current in vivo genetic mouse models of pulmonary neuroendocrine tumors
Project description:Molecular subtypes of SCLC have been defined by the expression status of ASCL1, NEUROD1, YAP1, and POU2F3 transcription regulators. ASCL1 knockdown resulted in decreased and increased expression of miR-375 and miR-455-3p, respectively. Analyses of publicly available transcriptome datasets suggested that miR-375 induced by ASCL1 is involved in YAP1 suppression whereas miR-455-3p is higher in non-neuroendocrine SCLC cells lacking ASCL1 expression.
Project description:Small cell lung cancer (SCLC) is a particularly challenging tumor to treat, due to its poor prognosis. ASCL1 and NEUROD1 are master regulators that define the molecular subtypes of SCLC, which are characterized by neuroendocrine features. Immunohistochemical studies have demonstrated that these genes can be co-expressed to varying degrees. While the transcriptional functions of ASCL1 have been well-documented, those of NEUROD1, specifically its target genes and miRNAs, remain less explored. The objective of this study was to identify the targets of this gene.