Project description:(from abstract): Iron oxidation is a desirable trait of biomining microorganisms, although the mechanism is not well-understood in extreme thermoacidophiles. The complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, ~2300 ORFs) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins (in)directly involved with bioleaching. As expected, the M. sedula genome encodes genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, could also be identified. These iron-oxidizing components are missing from genomes of non-leaching Sulfolobales like Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole genome transcriptional response analysis showed that 88 ORFs were up-regulated 2-fold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized. Dye flip of Mse cells includes two samples, yeast exact (YE) and yeast extract + ferrous sulfate (YEF). The first slide, Y3F5, has YE RNA labeled with cy3 and YEF RNA labeled with cy5, while the second slide, F3Y5, has YEF RNA labeled with cy3 and YE RNA labeled with cy5. YE serves as the reference condition, with the expectation that ORFs involved with Fe2+ oxidation (and SO4 metabolism) will be upregulated on YEF (log2 fold change of YE-YEF < -1).
Project description:(from abstract): Iron oxidation is a desirable trait of biomining microorganisms, although the mechanism is not well-understood in extreme thermoacidophiles. The complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, ~2300 ORFs) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins (in)directly involved with bioleaching. As expected, the M. sedula genome encodes genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, could also be identified. These iron-oxidizing components are missing from genomes of non-leaching Sulfolobales like Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole genome transcriptional response analysis showed that 88 ORFs were up-regulated 2-fold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized. Keywords: substrate response
Project description:G. uraniireducens was isolated from a subsurface site in Rifle, CO undergoing in situ uranium bioremediation. Sediments from the Rifle site were heat-sterilized, amended with acetate to simulate in situ bioremediation conditions, and inoculated with G. uraniireducens. Gene transcript abundance in these cells using sediment Fe(III) and Mn(IV) oxides as the electron acceptor were compared with transcript levels in cells grown with fumarate as the electron acceptor. Additional comparisons were made between cells grown on synthetic Fe(III) or Mn(IV) oxides and cells grown on fumarate.
Project description:The effect of sulfide stress on Desulfovibrio vulgaris Hildenborough (DvH) gene expression was determined by comparing the gene expression profiles of DvH under conditions in which sulfide was allowed to accumulate (high sulfide, average concentration 10 mM) against DvH cells grown under conditions in which sulfide was removed by continuous gassing (low sulfide, average concentration 1 mM). High sulfide significantly decreased the instantaneous growth rate constant and final cell density of the culture indicating a decreased bioenergetic fitness. Changes in gene expression caused by exposure to high sulfide were determined using full-genome DvH microarrays. The transcription of ribosomal protein-encoding genes was decreased, in agreement with the lower growth rate of DvH under high sulfide conditions. Interestingly, expression of the gene for DsrD, located downstream of the genes for dissimilatory sulfite reductase (DsrAB) was also strongly down-regulated. In contrast, the expression of many genes involved in iron accumulation, stress response and proteolysis, and chemotaxis were increased. This indicates that high sulfide represents a significant stress condition, in which the bioavailability of metals like iron may be lowered and in which proteins (e.g. metalloenzymes) may need to be refolded, or proteolytically degraded. Overall this leads to a reduced growth rate and less efficient biomass production with available resources. For each condition 2 unique biological samples were hybridized to 4 arrays that each contained duplicate spots. Genomic DNA was used as universal reference.
Project description:G. uraniireducens was isolated from a subsurface site in Rifle, CO undergoing in situ uranium bioremediation. Sediments from the Rifle site were heat-sterilized, amended with acetate to simulate in situ bioremediation conditions, and inoculated with G. uraniireducens. Gene transcript abundance in these cells using sediment Fe(III) and Mn(IV) oxides as the electron acceptor were compared with transcript levels in cells grown with fumarate as the electron acceptor. Additional comparisons were made between cells grown on synthetic Fe(III) or Mn(IV) oxides and cells grown on fumarate. 3 biological replicates hybridized in duplicate
Project description:The effect of sulfide stress on Desulfovibrio vulgaris Hildenborough (DvH) gene expression was determined by comparing the gene expression profiles of DvH under conditions in which sulfide was allowed to accumulate (high sulfide, average concentration 10 mM) against DvH cells grown under conditions in which sulfide was removed by continuous gassing (low sulfide, average concentration 1 mM). High sulfide significantly decreased the instantaneous growth rate constant and final cell density of the culture indicating a decreased bioenergetic fitness. Changes in gene expression caused by exposure to high sulfide were determined using full-genome DvH microarrays. The transcription of ribosomal protein-encoding genes was decreased, in agreement with the lower growth rate of DvH under high sulfide conditions. Interestingly, expression of the gene for DsrD, located downstream of the genes for dissimilatory sulfite reductase (DsrAB) was also strongly down-regulated. In contrast, the expression of many genes involved in iron accumulation, stress response and proteolysis, and chemotaxis were increased. This indicates that high sulfide represents a significant stress condition, in which the bioavailability of metals like iron may be lowered and in which proteins (e.g. metalloenzymes) may need to be refolded, or proteolytically degraded. Overall this leads to a reduced growth rate and less efficient biomass production with available resources.
Project description:Iron-sulfur minerals such as pyrite are found in many marine benthic habitats. At deep-sea hydrothermal vent sites they occur as massive sulfide chimneys. Hydrothermal chimneys formed by mineral precipitation from reduced vent fluids upon mixing with cold oxygenated sea water. While microorganisms inhabiting actively venting chimneys and utilizing reduced compounds dissolved in the fluids for energy generation are well studied, only little is known about the microorganisms inhabiting inactive sulfide chimneys. We performed a comprehensive meta-proteogenomic analysis combined with radiometric dating to investigate the diversity and function of microbial communities found on inactive sulfide chimneys of different ages from the Manus Basin (SW Pacific). Our study sheds light on potential lifestyles and ecological niches of yet poorly described bacterial clades dominating inactive chimney communities.
2019-01-02 | PXD010074 | Pride
Project description:Influence of Iron Oxides on Methanogen Communities
Project description:Methanogens inhabit euxinic (sulfide-rich) or ferruginous (iron-rich) environments that promote the precipitation of transition metals as metal sulfides, such as pyrite, reducing metal or sulfur availability. Such environments have been common throughout Earth’s history raising the question as to how anaerobes obtain(ed) these elements for the synthesis of enzyme cofactors. Here, we show a methanogen can synthesize molybdenum nitrogenase metallocofactors from pyrite as the source of iron and sulfur, enabling nitrogen fixation. Pyrite-grown, nitrogen-fixing cells grow faster and require 25-fold less molybdenum than cells grown under euxinic conditions. Growth yields are 3 to 8 times higher in cultures grown under ferruginous relative to euxinic conditions. Physiological, transcriptomic, and geochemical data indicate these observations are due to sulfide-promoted metal limitation, in particular molybdenum. These findings suggest that molybdenum nitrogenase may have originated in a ferruginous environment that titrated sulfide to form pyrite, facilitating the availability of sufficient iron, sulfur, and molybdenum for cofactor biosynthesis.
Project description:Here, we successfully used NO as the direct electron acceptor for the enrichment of a microbial community in a continuous bioreactor. The enrichment culture, mainly comprised of two new organisms from the Sterolibacteriaceae family, grew on NO reduction to N2 and formate oxidation, with virtually no accumulation of N2O. The microbial growth kinetics of the enrichment culture as well as its affinity for different N-oxides were determined. In parallel, using metagenomics, metatranscriptomics, and metaproteomics, the biochemical reactions underlying the growth of these microorganisms on NO were investigated. This study demonstrates that microorganisms thrive and can be enriched on NO, and presents new opportunities to study microbial growth on this highly energetic and climate-active molecule that may have been pivotal in the evolution of aerobic respiration.