Project description:Megalurothrips usitatus (Bagnall) is one of the most harmful pests of leguminous plants. In order to expand our knowledge on the infection of M. usitatus by entomopathogenic fungi, two newly identified isolates of Akanthomyces attenuatus (Zare & Gams) were tested for their pathogenicity against M. usitatus. Both isolates of A. attenuatus (SCAUDCL-38 and SCAUDCL-56) were isolated from soil and were identified by morphological and molecular analyses. The adult females of M. usitatus were treated with five different concentrations (1 × 104, 1 × 105, 1 × 106, 1 × 107, and 1 × 108 conidia/mL) of the isolates. Our results revealed 76.25% and 57.5% mortality of M. usitatus after five days of treatment with 1 × 108 conidia/mL of SCAUDCL-38 and SCAUDCL-56, respectively. The median lethal concentrations (LC50) of SCAUDCL-38 and SCAUDCL-56 calculated through linear regression analysis after five days of fungal treatment of M. usitatus were 1.9 × 106 and 1.5 × 107 conidia/mL, respectively, whereas the median lethal time (LT50) observed for 1 × 108 conidia/mL of SCAUDCL-38 and SCAUDCL-56 were 3.52 days and 4.9 days, respectively. A. attenuatus isolates SCAUDCL-38 and SCAUDCL-56 are highly pathogenic strains of M. usitatus. These findings offer valuable information on the development and commercialization of alternative control measures against M. usitatus.
| S-EPMC6627670 | biostudies-literature
Project description:Development of matrine and Akanthomyces attenuatus against whitefly
Project description:BackgroundBemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a serious pest of crops in different regions of the world. Our recent studies on the joint application of Akanthomyces attenuatus (a pathogenic insect fungus) and matrine (a botanical insecticide) against B. tabaci have shown promising results. Using RNA sequencing (RNA-Seq), we identified differentially expressed genes involved in whitefly responses to single or mixed applications of A. attenuatus and matrine.MethodsIn this study, we compared the transcriptome profiles of B. tabaci treated with individual and combined treatments of A. attenuatus and matrine to determine variations in gene expression among whiteflies in response to different treatments.ResultsTranscriptomic data analysis showed differential expression of 71, 1194, and 51 genes in response to A. attenuatus (BtA), matrine (BtM), and A. attenuatus + matrine (BtAM) treatment, respectively. A total of 65 common differentially expressed genes (DEGs) were identified between whiteflies treated with A. attenuatus (BtA) and matrine (BtM). A comparison of DEGs across the three treatments (BtA, BtM, and BtAM) revealed two common DEGs. The results also revealed that AMPK signaling, apoptosis, and drug metabolism pathways are likely involved in whitefly defense responses against A. attenuatus and matrine infection. Furthermore, a notable suppression of general metabolism and immune response genes was observed in whiteflies treated with A. attenuatus + matrine (BtAM) compared to whiteflies treated with individual A. attenuatus (BtA) or matrine (BtM) treatments.ConclusionDynamic changes in the number of differentially expressed genes were observed in B. tabaci subjected to different treatments (BtA, BtM, and BtAM). To the best of our knowledge, this is the first report on the molecular interactions between whitefly and individual or combined treatments of A. attenuatus and matrine. These results will further improve our knowledge of the infection mechanism and complex biochemical processes involved in the synergistic action of A. attenuatus and matrine against B. tabaci.
Project description:Megalurothrips usitatus (Bagrall) is an important pest of legumes worldwide, causing great economic loss every year. Beauveria brongniartii and Akanthomyces attenuatus have shown considerable pathogenicity against M. usitatus in our previous studies. The medial lethal concentration (LC50) and the sublethal lethal concentration (LC25) of B. brongniartii isolate SB010 against M. usitatus were 8.38 × 105 and 1.73 × 105 conidia mL-1, respectively, whereas those of A. attenuatus isolate SCAUDCL-53 against M. usitatus were 4.37 × 105 and 2.97 × 104 conidia mL-1, respectively. This study reports the transcriptome-based explanation of the stress responses of M. usitatus following the application of B. brongniartii and A. attenuatus. The analysis of the transcriptomic data revealed the expression of 254, 207, 195, and 234 immunity-related unigenes by M. usitatus in response to B. brongniartii LC50 (SB1), B. brongniartii LC25 (SB2), A. attenuatus LC50 (V1), and A. attenuatus LC25 (V2), respectively. The biological function and metabolic pathway analyses showed that these unigenes were mainly related to pattern recognition receptors, information transduction factors, and reaction factors, such as scavenger receptor, cytochrome b5, cuticle protein, lysozyme, and serine protease.