Project description:RNA N6-melthyladenosine has been suggested to play important roles in various biological processes. Chicken ovary development is a process controlled by complex gene regulations. In this study, transcriptome-wide m6A methylation of the Wuhua yellow-feathered chicken ovaries before and after sexual maturation was profiled to identify potential molecular mechanisms underlying chicken ovary development. The results showed that m6A levels of mRNAs changed dramatically during sexual maturity. A total of 1476 differential m6A peaks were found between these two stages with 662 significantly up-regulated methylation peaks and 814 down-regulated methylation peaks after sexual maturation. A positive correlation was found between the m6A peaks and gene expression levels. Functional enrichment analysis indicated that apoptosis related pathways might be the key molecular regulatory pathway underlying the poor reproductive performance of Wuhua yellow-feathered chicken. The fine expressional regulation of genes related to follicles development and follicle atresia controlled by m6A during the maturity results in the poor reproductive performance in the Wuhua yellow-feathered chicken. However, the regulatory mechanisms are still unclear, thus more further studies are required. The pathways and corresponding candidate genes found here may be useful for molecular design breeding for improving egg production performance in Chinese local chicken breed, and it will also benefit for the genetic resource protection of valuable avian species.
Project description:Optimization of broiler chicken breast muscle protein accretion is key for the efficient production of poultry meat, whose demand is steadily increasing. In a context where antimicrobial growth promoters use is being restricted, it is important to find alternatives as well as to characterize the effect of immunological stress on broiler chicken growth. Despite of its importance, research on broiler chicken muscle protein dynamics has been mostly limited to the study of mixed protein turnover. The present study aims to characterize the effect of a bacterial challenge and the feed supplementation of a citrus and a cucumber extract on broiler chicken individual breast muscle proteins fractional synthesis rates (FSR) using a recently developed dynamic proteomics pipeline. 21 day-old broiler chickens were administered a single 2H2O dose before being culled at different timepoints. A total of 60 breast muscle protein extracts from five experimental groups (Unchallenged, Challenged, Control Diet, Diet 1 and Diet 2) were analyzed using a DDA proteomics approach. Proteomics data was filtered in order to reliably calculate multiple proteins FSR making use of a newly developed bioinformatics pipeline. Broiler breast muscle proteins FSR uniformly decreased following a bacterial challenge, this change was judged significant for 15 individual proteins, the two major functional clusters identified as well as for mixed breast muscle protein. Citrus or cucumber extract feed supplementation did not show any effect on the breast muscle protein FSR of immunologically challenged broilers. The present study has identified potential predictive markers of breast muscle growth and provided new information on broiler chicken breast muscle protein turnover which could be essential for improving the efficiency of broiler chicken meat production.
2024-04-04 | PXD044325 | Pride
Project description:Microbial community of yellow-feather broiler
Project description:Bacterial infections remain an important cause of morbidity in poultry production. The molecular characteristics and dynamic changes in immune cell populations after bacterial infection have yet to be fully understood. Beijing-You chicken and Cobb broiler, two broiler breeds with different disease resistance, were infected with Salmonella typhimurium, and inflammation models were constructed. We characterized chicken spleen CD45+ immune cells by single-cell RNA sequencing.