Project description:R-loop is a common chromatin feature consisting of a displaced single-stranded DNA and an RNA-DNA hybrid, and dysregulation of R-loop surveillance results in genomic and transcriptomic instability. Although the RNA moiety of most R-loops originates from linear transcripts, circular RNAs (circRNAs), outputs from back-splicing, can also hybridize with the complementary strand of a DNA duplex. However, how circRNA-associated R-loops (ciR-loops) are monitored remains elusive. Here, we identified the DEAD-box RNA helicase Brr2 as an evolutionarily-conserved ciR-loop repressor with dual roles in inhibiting circRNA generation and resolving harmful ciR-loops. Accumulation of ciR-loops caused by loss-of-function of this dual-action factor induces antisense transcription and premature transcription termination for many genes and generates significant DNA damage, which further leads to a series of defects in DNA replication, cell division and cell proliferation. We propose that functional integration of multilayered regulation by a single protein can be an efficient double protection against genome instability.
Project description:Brr2 is a DExD/H-box helicase responsible for U4/U6 unwinding, a critical step in spliceosomal activation. Brr2 contains an N-terminal domain and two tandem sets of a helicase-like domain followed by a Sec63 domain with unknown function. We determined the crystal structure of the second Sec63 domain, which unexpectedly resembles domains 4 and 5 of DNA helicase Hel308. The helicase-like domain upstream of Sec63 has clear sequence similarity with domains 1-3 of Hel308. In addition modeling indicates that Brr2 is composed of an N-terminal domain and two consecutive Hel308-like modules (Hel308-I and II). Together this provides our first glimpse of the overall structure of this large and unique spliceosomal ATPase and helicase. Our structural model and mutagenesis data suggest that Brr2 shares a similar helicase mechanism to Hel308, that differs from many DEAD-box proteins. We demonstrate that Hel308-II interacts with Prp8 and Snu114 in vitro and in vivo, potentially serving as a mediator for the regulation of Brr2â??s activity by Prp8. We further find that the C-terminal region of Prp8 (Prp8-CTR) facilitates the binding of the Brr2/Prp8-CTR complex to U4/U6, suggesting a potential role of Prp8-CTR as an auxiliary substrate binding and specificity domain for Brr2. Splicing specific microarrays were used to assess the genome-wide defects in pre-mRNA splicing that result from a deletion of the second Sec63 domain of yeast Brr2.
Project description:Brr2 is a DExD/H-box helicase responsible for U4/U6 unwinding, a critical step in spliceosomal activation. Brr2 contains an N-terminal domain and two tandem sets of a helicase-like domain followed by a Sec63 domain with unknown function. We determined the crystal structure of the second Sec63 domain, which unexpectedly resembles domains 4 and 5 of DNA helicase Hel308. The helicase-like domain upstream of Sec63 has clear sequence similarity with domains 1-3 of Hel308. In addition modeling indicates that Brr2 is composed of an N-terminal domain and two consecutive Hel308-like modules (Hel308-I and II). Together this provides our first glimpse of the overall structure of this large and unique spliceosomal ATPase and helicase. Our structural model and mutagenesis data suggest that Brr2 shares a similar helicase mechanism to Hel308, that differs from many DEAD-box proteins. We demonstrate that Hel308-II interacts with Prp8 and Snu114 in vitro and in vivo, potentially serving as a mediator for the regulation of Brr2’s activity by Prp8. We further find that the C-terminal region of Prp8 (Prp8-CTR) facilitates the binding of the Brr2/Prp8-CTR complex to U4/U6, suggesting a potential role of Prp8-CTR as an auxiliary substrate binding and specificity domain for Brr2.
Project description:DEAD-box ATPases belong to an abundant class of proteins that are involved in virtually all aspects of RNA metabolism and are found in all kingdoms of life. When bound to a DEAD-box ATPase, the RNA substrate is forced into a kinked conformation that is incompatible with helical structures. Distortion of the RNA can result in unwinding of short RNA duplexes (helicase activity) or destabilize RNA-protein interactions, allowing DEAD-box ATPases to remodel mRNPs (RNPase activity). The RNPase activity makes DEAD-box ATPases suitable molecular building blocks for the implementation of checkpoints that confer directionality to the process of RNA biogenesis. Here, we provide data that characterizes the DEAD-box ATPase Dbp2 (SPBP8B7.16c) of the fission yeast Schizosaccharomyces pombe. Using ChIP-seq, we determined the sites where HTP-tagged Dbp2 associates with chromatin. ChIP-seq of Srp2-HTP is included as a reference protein that is known to associate with transcribing RNA polymerase II (RNAPII).
Project description:Tripartite motif protein 25 (TRIM25) is an E3 ligase that ubiquitinates multiple substrates within the RLR signalling cascade and plays both RING (really interesting new gene)-dependent and RING-independent roles in RIG-I-mediated IFN induction. We report that the PRY-SPRY domain of TRIM25 interacts with the N-terminal extension (NTE) of DEAD-box helicase 3X (DDX3X), a host protein with multiple roles in RLR signalling. Gene reporter assays and knockdown studies reveal DDX3X and TRIM25 cooperate to activate the IFN- promoter following RIG-I activation independent of DDX3X’s catalytic activity. We also show that TRIM25 ubiquitinates DDX3X at several lysine residues in vitro and in cells.
Project description:How cells regulate gene expression in a precise spatiotemporal manner during organismal development is a fundamental question in biology. Although the role of transcriptional condensates in gene regulation has been established, little is known about the function and regulation of these molecular assemblies in the context of animal development and physiology. Here we show that the evolutionarily conserved DEAD-box helicase DDX-23 controls cell fate in Caenorhabditis elegans by binding to and facilitating the condensation of MAB-10, the Caenorhabditis elegans homolog of mammalian NGFI-A-binding (NAB) protein. MAB-10 is a transcriptional cofactor that functions with the early growth response (EGR) protein LIN-29 to regulate the transcription of genes required for exiting the cell cycle, terminal differentiation, and the larval-to-adult transition. We suggest that DEAD-box helicase proteins function more generally during animal development to control the condensation of NAB proteins important in cell identity and that this mechanism is evolutionarily conserved. In mammals, such a mechanism might underlie terminal cell differentiation and when misregulated might promote cancerous growth.
Project description:DEAD-box ATPases belong to an abundant class of proteins that are involved in virtually all aspects of RNA metabolism and are found in all kingdoms of life. When bound to a DEAD-box ATPase, the RNA substrate is forced into a kinked conformation that is incompatible with helical structures. Distortion of the RNA can result in unwinding of short RNA duplexes (helicase activity) or destabilize RNA-protein interactions, allowing DEAD-box ATPases to remodel mRNPs (RNPase activity). The RNPase activity makes DEAD-box ATPases suitable molecular building blocks for the implementation of checkpoints that confer directionality to the process of RNA biogenesis. Here, we provide data that characterizes the DEAD-box ATPase Dbp2 (SPBP8B7.16c) of the fission yeast Schizosaccharomyces pombe. Using RNA-seq, we determined RNA expression profiles of a conditional depletion strain of Dbp2 and the corresponding wild type. For this, we placed the endogenous dbp2 gene under the control of the P.nmt1 promoter, which is repressed in the presence of thiamine. Cells were harvested at the beginning (t0) or the end (t5 or t9) of shift to thiamine-containing YES medium. S. cerevisiae spike-in cells were added in a 1:5 OD600 ratio immediately before harvesting.
Project description:DEAD-box ATPases belong to an abundant class of proteins that are involved in virtually all aspects of RNA metabolism and are found in all kingdoms of life. When bound to a DEAD-box ATPase, the RNA substrate is forced into a kinked conformation that is incompatible with helical structures. Distortion of the RNA can result in unwinding of short RNA duplexes (helicase activity) or destabilize RNA-protein interactions, allowing DEAD-box ATPases to remodel mRNPs (RNPase activity). The RNPase activity makes DEAD-box ATPases suitable molecular building blocks for the implementation of checkpoints that confer directionality to the process of RNA biogenesis. Here, we provide data that characterizes the DEAD-box ATPase Dbp2 (SPBP8B7.16c) of the fission yeast Schizosaccharomyces pombe. Using calibrated RNAPII-ChIP-seq, we determined the transcription profiles of a conditional depletion strain of Dbp2 and the corresponding wild type. For this, we placed the endogenous dbp2 gene under the control of the P.nmt1 promoter, which is repressed in the presence of thiamine. Cells were crosslinked at the beginning (t0) or the end (t9) of a 9h shift to thiamine-containing YES medium. S. cerevisiae spike-in cells were added in a 1:5 OD600 ratio immediately before crosslinking.