Project description:The RNA-binding protein eIF2A has been implicated in a variety of cellular processes including tumorigenesis. This role has been attributed to its function as alternative translation initiation factor. However, the mechanisms by which eIF2A regulates translation and its contribution to oncogenic transformation are unclear. Here, we shed light on these aspects using a melanoma cell model consisting of the non-tumoral melanocytic cell line MelST and its metastatic counterpart obtained by RasV12 overexpression (MelSTR). Depletion of eIF2A from MelST and MelSTR cells revealed acquired dependencies upon Ras transformation for migration. Surprisingly, analysis of the transcriptome (RNA-Seq) and translatome (ribosome profiling) upon eIF2A depletion showed minor to no changes in translation. RIP-Seq and RT-qPCR furthermore indicate that eIF2A binds mRNA targets in a translation-independent manner. Interestingly, protein interactome analyses point towards a function of eIF2A in cytoskeletal remodeling and indeed we can show that eIF2A localizes to the centrosome and affects its composition and orientation, linking eIF2A with migration. In addition, eIF2A promotes migration in a manner that depends on its RNA-binding activity. Together, these results indicate that eIF2A does not function as a translation factor in melanoma cells, but through a novel function which is based on its RNA-binding activity and its connections to the centrosome.
Project description:The RNA-binding protein eIF2A has been implicated in a variety of cellular processes including tumorigenesis. This role has been attributed to its function as alternative translation initiation factor. However, the mechanisms by which eIF2A regulates translation and its contribution to oncogenic transformation are unclear. Here, we shed light on these aspects using a melanoma cell model consisting of the non-tumoral melanocytic cell line MelST and its metastatic counterpart obtained by RasV12 overexpression (MelSTR). Depletion of eIF2A from MelST and MelSTR cells revealed acquired dependencies upon Ras transformation for migration. Surprisingly, analysis of the transcriptome (RNA-Seq) and translatome (ribosome profiling) upon eIF2A depletion showed minor to no changes in translation. RIP-Seq and RT-qPCR furthermore indicate that eIF2A binds mRNA targets in a translation-independent manner. Interestingly, protein interactome analyses point towards a function of eIF2A in cytoskeletal remodeling and indeed we can show that eIF2A localizes to the centrosome and affects its composition and orientation, linking eIF2A with migration. In addition, eIF2A promotes migration in a manner that depends on its RNA-binding activity. Together, these results indicate that eIF2A does not function as a translation factor in melanoma cells, but through a novel function which is based on its RNA-binding activity and its connections to the centrosome.
Project description:The RNA-binding protein eIF2A has been implicated in a variety of cellular processes including tumorigenesis. This role has been attributed to its function as alternative translation initiation factor. However, the mechanisms by which eIF2A regulates translation and its contribution to oncogenic transformation are unclear. Here, we shed light on these aspects using a melanoma cell model consisting of the non-tumoral melanocytic cell line MelST and its metastatic counterpart obtained by RasV12 overexpression (MelSTR). Depletion of eIF2A from MelST and MelSTR cells revealed acquired dependencies upon Ras transformation for migration. Surprisingly, analysis of the transcriptome (RNA-Seq) and translatome (ribosome profiling) upon eIF2A depletion showed minor to no changes in translation. RIP-Seq and RT-qPCR furthermore indicate that eIF2A binds mRNA targets in a translation-independent manner. Interestingly, protein interactome analyses point towards a function of eIF2A in cytoskeletal remodeling and indeed we can show that eIF2A localizes to the centrosome and affects its composition and orientation, linking eIF2A with migration. In addition, eIF2A promotes migration in a manner that depends on its RNA-binding activity. Together, these results indicate that eIF2A does not function as a translation factor in melanoma cells, but through a novel function which is based on its RNA-binding activity and its connections to the centrosome.
Project description:We apply ribosome profiling here to assess the role of eIF2A in translation initiation. For this we test the change in translation efficiency between HeLa control and eIF2A-KO cells, however we do not find any transcript to depend on eIF2A. Since eIF2A is thought to take over the function of eIF2 when eIF2 is inhibited, we also test conditions where the integrated stress response is activated, thereby leading to eIF2 inactivation. In none of our assays, however, could we detect a role of eIF2A in translation initiation.
Project description:Earlier investigations have associated mammalian eIF2A with Met-tRNAi binding to the 40S subunit and its recruitment to specialized mRNAs in a GTP-independent manner. Additionally, eIF2A has been implicated in non-AUG start codon initiation, particularly under conditions where eIF2 function is attenuated by phosphorylation of its α-subunit during stress or starvation. However, the precise role of eIF2A in vivo translation remains unclear. Moreover, it's uncertain if the conserved ortholog in budding yeast can functionally substitute for eIF2 during stress. To address these questions, we conducted ribosome profiling on a yeast deletion mutant lacking eIF2A, alongside isogenic wild-type (WT) cells, both in the presence or absence of eIF2α phosphorylation induced by amino acid starvation.
Project description:Many positive-strand RNA viruses, including all known coronaviruses, employ programmed –1 ribosomal frameshifting (–1 PRF) to regulate the translation of polycistronic viral RNAs. However, only a few host factors have been shown to regulate –1 PRF. Through a reporter-based genome-wide CRISPR/Cas9 knockout screen, we identified several host factors that either suppressed or enhanced –1 PRF of SARS-CoV-2. One of these factors is eukaryotic translation initiation factor 2A (eIF2A), which specifically and directly enhanced –1 PRF in vitro and in cells. Consistent with the crucial role of efficient –1 PRF in transcriptase/replicase expression, loss of eIF2A reduced SARS-CoV-2 replication in cells. Transcriptome-wide analysis of eIF2A-interacting RNAs showed that eIF2A primarily interacted with 18S ribosomal RNA near the contacts between the SARS-CoV-2 frameshift-stimulatory element (FSE) and the ribosome. Thus, our results revealed an unexpected role for eIF2A in modulating the translation of specific RNAs independent of its previously described role during initiation.
Project description:Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) helps decide b cell survival in diabetes. The alternative eukaryotic initiation factor 2A (EIF2A) has been proposed to mediate EIF2S1-independent translation during cellular stress and viral infection, but its role in b cells is unknown. EIF2A abundance is high in human and mouse islets relative to other tissues, and both thapsigargin and palmitate significantly increased EIF2A mRNA and EIF2A protein levels in MIN6 cells, mouse islets and human islets. Knockdowns of EIF2A, the related factor EIF2D, or both EIF2A and EIF2D, were not sufficient to cause apoptosis. On the other hand, transient or stable EIF2A over-expression protected MIN6 cells, primary mouse islets, and human islets from ER stress-induced, caspase-3-dependent apoptosis. Mechanistically, EIF2A overexpression decreased ERN1 (also known as IRE1a) expression in thapsigargin-treated MIN6 cells or human islets. In vivo, b cell specific EIF2A viral overexpression reduced ER stress, improved insulin signaling, and abrogated hyperglycemia in Ins2Akita/WT mice. EIF2A overexpression significantly increased expression of genes involved protein translation and reduced expression of pro-apoptotic genes (e.g. ALDH1A3). Remarkably, the decrease in global protein synthesis during UPR was prevented by EIF2A, despite ER stress-induced EIF2S1 phosphorylation. The protective effects of EIF2A were additive to those of ISRIB, a drug that counteracts the effects of EIF2S1 phosphorylation. Cells overexpressing EIF2A showed higher expression of translation factor EIF2B5, which may contribute to the lack of translational inhibition in these cells. We conclude that EIF2A is a novel target for b cell protection and the circumvention of EIF2S1-mediated translational repression.