Project description:We combined an iTRAQ-based proteome-level analysis with an RNA sequencing-based transcriptome-level analysis to detect the proteins and genes related to fruit peel colour development during two fruit development stages in the ‘Tunisia’ and ‘White’ pomegranate cultivars.
Project description:In this study, we aim to present a global transcriptome analysis of medicinal plant, Catharanthus roseus. We generated about 343 million high-quality reads from three tissues (leaf, root and flower) using Illumina platform. We performed an optimized de novo assembly of the reads and estimated transcript abundance in different tissue samples. The transcriptome dynamics was studied by differential gene expression analyses among tissue samples. We collected different tissue samples from the mature plants. Total RNA isolated from these tissue samples was subjected to Illumina sequencing. The sequence data was further filtered using NGS QC Toolkit to obtain high-quality reads. The filtered reads were used for de novo assembly optimization. The reads were further mapped to the Catharanthus transcripts via CLC Genomics Workbench and differential gene expression analysis was performed using DESeq software.
Project description:De novo centromeres originate occasionally from non-centromeric regions of chromosomes, providing an excellent model system to study centromeric chromatin. The maize mini-chromosome Derivative 3-3 contains a de novo centromere, which was derived from a euchromatic site on the short arm of chromosome 9 that lacks traditional centromeric repeat sequences. Our previous study found that the CENH3 binding domain of this de novo centromere is only 288 kb with a high-density gene distribution with low-density of transposons. Here we applied next generation sequencing technology to analyze gene transcription, DNA methylation for this region. Our RNA-seq data revealed that active chromatin is not a barrier for de novo centromere formation. Bisulfite-ChIP-seq results indicate a slightly increased DNA methylation level after de novo centromere formation, reaching the level of a native centromere. These results provide insight into the mechanism of de novo centromere formation and subsequent consequences. RNA-seq was carried out using material from seedling and young leaves between control and Derivative 3-3. Bisulfite-ChIP-seq was carried out with anti-CENH3 antibodies using material from young leaves in Derivative 3-3.
Project description:De novo peptide sequencing is a fundamental research area in mass spectrometry (MS) based proteomics. However, those methods have often been evaluated using a couple of simple metrics that do not fully reflect their overall performance. Moreover, there has not been an established method to estimate the false discovery rate (FDR) and the significance of de novo peptide-spectrum matches (PSMs). Here we propose NovoBoard, a comprehensive framework to evaluate the performance of de novo peptide sequencing methods. The framework consists of diverse benchmark datasets (including tryptic, nontryptic, immunopeptidomics, and different species), and a standard set of accuracy metrics to evaluate the fragment ions, amino acids, and peptides of the de novo results. More importantly, a new approach is designed to evaluate de novo peptide sequencing methods on target-decoy spectra and to estimate their FDRs. Our results thoroughly reveal the strengths and weaknesses of different de novo peptide sequencing methods, and how their performances depend on specific applications and the types of data. Our FDR estimation also shows that some tools may perform better than the others in distinguishing between de novo PSMs and random matches, and can be used to assess the significance of de novo PSMs.
Project description:Rosa roxburghii Tratt belongs to the Rosaceae family, and the fruit is flavorful, economic, and high nutritious, providing health benefits. MYB proteins play key roles in R. roxburghii’ development and fruit quality. However, the available genomic and transcriptomic information are extremely deficient. Here, a normalized cDNA library was constructed using five tissues, stem, leaf, flower, young fruit, and mature fruit, with three repetitions, and sequenced using the Illumina HiSeq 3000 platform. De novo assembly was performed, and 470.66 million clean reads were obtained. In total, 63,727 unigenes, with an average GC content of 42.08%, were determined and 59,358 were annotated. In addition, 9,354 unigenes were assigned the Gene Ontology category, and 20,202 unigenes were assigned to 25 Eukaryotic Ortholog Groups. Additionally, 19,507 unigenes were classified into 140 pathways of the Kyoto Encyclopedia of Genes and Genomes database. Using the transcriptome, 163 unigenes associated with MYB were detected. Among these genes, there were total 75 genes which strikingly expressed in various tissues, including 10 R1 MYB, 42 R2R3 MYB, 1 R1R2R3 MYB, 3 MYB and 19 atypical MYB-like proteins. The expression levels of 12 MYB genes randomly selected for qRT-PCR analysis were consistent with the RNA-seq results. A total of 37,545 microsatellites were detected, with an average EST-SSR frequency of 0.59 (37,545/63,727). This transcriptome data will be valuable for identifying genes of interest and studying their expression and evolution.
Project description:The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. To examine differences in sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA (mRNA) was isolated from dissected brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The data consist of short read sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly, using Trinity and CAP3 assembly suites, and differential expression analysis using the edgeR package. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from associated database submissions.