Project description:This study is aimed to isolate marine actinomycetes from sediments from Andaman and the Gulf of Thailand. All 101 marine actinomycetes were screened for anti-biofilm activity. Streptomyces sp. GKU223 showed significantly inhibited biofilm formation of S. aureus. The evaluation of supernatants of anti-biofilm activity produced by Streptomyces sp. GKU223 has been performed. Since the interaction between marine actinomycetes and biofilm forming bacteria has never been investigated, proteomic analysis has been used to identify whole cell proteins involved in anti–biofilm activity. Understanding the interaction at molecular level will lead to sustainably use for anti-biofilm producing marine actinomycetes in pharmaceutical and medicinal applications in the future.
Project description:This study is aimed to isolate marine actinomycetes from sediments from Andaman and the Gulf of Thailand. All 101 marine actinomycetes were screened for anti-biofilm activity. Streptomyces sp. GKU 257-1 showed significantly inhibited biofilm formation of E. coli. The evaluation of supernatants of anti-biofilm activity produced by Streptomyces sp. GKU 257-1 has been performed. Since the interaction between marine actinomycetes and biofilm forming bacteria has never been investigated, proteomic analysis has been used to identify whole cell proteins involved in anti–biofilm activity. Understanding the interaction at molecular level will lead to sustainably use for anti-biofilm producing marine actinomycetes in pharmaceutical and medicinal applications in the future.
Project description:Protein expression in Staphylococcus sp. NIOSBK35 isolated from marine environment (mangrove sediments) to different concentrations of arsenic (III)
Project description:Investigation of whole genome gene expression level changes in Streptomyces sp. SirexAA-E (ActE) when grown on different carbon sources. The results of this study demonstrate that ActE upregulates a small number of genes specific for the utilization of the avaliable carbon source. Cellulolytic Streptomyces sp. SirexAA-E (ActE), isolated from the pinewood-boring wasp Sirex noctilio, has a genome enriched for biomass utilization. The secreted proteomes obtained from growth on pure polysaccharides catalyzed hydrolysis of cellulose, mannan, and xylan with specific activities comparable to Spezyme CP, a commercial cellulase preparation. During reaction of an ActE secretome with cellulose, reducing sugar release was markedly stimulated in the presence of O2. ActE also expresses and secretes an expanded repertoire of enzymes during growth on natural and pre-treated biomass. These results indicate a new microbial contribution to biomass utilization that is widely distributed in natural environments by insects
Project description:The diverse mixture of contaminants frequently present in estuarine wetlands complicates their assessment by routine chemical or biological analyses. We investigated the use of gene expression to assess contaminant exposure and the condition of southern California (USA) estuarine fish. Liver gene expression, plasma estradiol concentrations and gonad histopathology were used to investigate the biological condition of longjaw mudsuckers (Gillichthys mirabilis). A wide array of metals, legacy organochlorine pesticides, PCBs and contaminants of emerging concern were detected in sediments and whole fish. Overall gene expression patterns were characteristic to each of four sites investigated in this study. Differentially expressed genes belonged to several functional categories including xenobiotic metabolism, detoxification, disease and stress responses. In general, plasma estradiol concentrations were similar among fish from all areas. Some fish gonads had pathologic changes (e.g. infection, inflammation) that could indicate weakened immune systems and chronic stress. The differential expression of some genes involved in stress responses correlated with the prevalence of histologic gonad lesions. This study indicates that sentinel fish gene expression data is a promising tool for assessing the biological condition of fish exposed to environmental contaminants. Key Words: Gene expression, fish, contaminants, estuaries. This abstract belongs to a manuscript that has been submitted to Environmental Science and Technology. The manuscript has been invited as part of an especial Omics Issue which is expected to be published in 2012. In this study, we used hepatic gene expression in wild longjaw mudsuckers (Gillichthys mirabilis) to assess biological responses from anthropogenically influenced wetlands. We investigated the relationships among gene expression responses, chemical exposure and additional biological responses in this species. We studied estuarine wetlands that had diverse contaminant characteristics and received three main types of contaminant inputs in different proportions: agricultural runoff, urban runoff and municipal wastewater.
Project description:Streptomyces sp. M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. Our results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. This is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.
Project description:This study aimed to investigate the variations in the protein composition of Streptomyces sp. PU10 when cultivated with either Impranil (polyestere-polyurethane) or glucose as the carbon source. We analyzed both the intracellular and extracellular protein fractions to gain insights into the intricate processes involving PU degradation, intermediate metabolic pathways in PU degradation, and the connection between primary and secondary metabolism within Streptomyces sp. PU10.
Project description:Investigation of whole genome gene expression level changes in Streptomyces sp. SirexAA-E (ActE) when grown on different carbon sources. The results of this study demonstrate that ActE upregulates a small number of genes specific for the utilization of the avaliable carbon source. Cellulolytic Streptomyces sp. SirexAA-E (ActE), isolated from the pinewood-boring wasp Sirex noctilio, has a genome enriched for biomass utilization. The secreted proteomes obtained from growth on pure polysaccharides catalyzed hydrolysis of cellulose, mannan, and xylan with specific activities comparable to Spezyme CP, a commercial cellulase preparation. During reaction of an ActE secretome with cellulose, reducing sugar release was markedly stimulated in the presence of O2. ActE also expresses and secretes an expanded repertoire of enzymes during growth on natural and pre-treated biomass. These results indicate a new microbial contribution to biomass utilization that is widely distributed in natural environments by insects Streptomyces sp. ActE was grown in minimal medium supplimented with 0.5% carbon source (glucose, sigmacell-20, xylan, chitin, cellobiose, or AFEX). Cells were grown for 7 days and total RNA was extracted from the cell pellet. At least 3 biological replicates were performed for each carbon source (glucose, 3; sigmacell, 3; xylan, 5; chitin, 3; cellobiose 3; AFEX 3). Each biological replicate contained 3 technical replicates. The complete dataset were RMA Background Corrected, quantile normalized, the RMA algorithm was utilized by DNAStar ArrayStar.