Project description:Omicron is currently the dominant SARS-CoV-2 variant and several sublineages have emerged. Questions remain about the impact of previous SARS-CoV-2 exposure on cross-variant immune responses elicited by the SARS-CoV-2 Omicron sublineage BA.2 compared to BA.1. Here we show that without previous history of COVID-19, BA.2 infection induces a reduced immune response against all variants of concern (VOC) compared to BA.1 infection. The absence of ACE2 binding in sera of previously naïve BA.1 and BA.2 patients indicates a lack of meaningful neutralization. In contrast, anti-spike antibody levels and neutralizing activity greatly increased in the BA.1 and BA.2 patients with a previous history of COVID-19. Transcriptome analyses of peripheral immune cells showed significant differences in immune response and specific antibody generation between BA.1 and BA.2 patients as well as significant differences in the expression of specific immune genes. In summary, prior infection status significantly impacts the innate and adaptive immune response against VOC following BA.2 infection.
Project description:We utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. Our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.
Project description:We preformed a systems biological assessment of lower respiratory tract host immune responses and microbiome dynamics in COVD-19 patients, using bulk RNA-sequencing, single-cell RNA sequencing, and techniques, and microbiome analysis. Are focus was on differential gene expression in severe COVID-19 patients who developed ventilator associated pneumonia (VAP) during their course versus severe COVID-19 patients who did not develop VAP. We found early impairment in antibacterial immune signaling in patients two or more weeks prior to the development of VAP, compared to COVID-19 patients who did not develop VAP. There was no signficant difference in viral load, but an association of disruption in lung microbiome by alpha and beta diversity metrics was also found.
Project description:We preformed a systems biological assessment of lower respiratory tract host immune responses and microbiome dynamics in COVD-19 patients, using bulk RNA-sequencing, single-cell RNA sequencing, and techniques, and microbiome analysis. Are focus was on differential gene expression in severe COVID-19 patients who developed ventilator associated pneumonia (VAP) during their course versus severe COVID-19 patients who did not develop VAP. We found early impairment in antibacterial immune signaling in patients two or more weeks prior to the development of VAP, compared to COVID-19 patients who did not develop VAP. There was no signficant difference in viral load, but an association of disruption in lung microbiome by alpha and beta diversity metrics was also found.
Project description:The majority of people in the U.S. manage health through at least one prescription drug. Drugs classified as non-antibiotics can adversely affect the gut microbiome and disrupt intestinal homeostasis. Here, we identified medications associated with an increased risk of GI infections across a population cohort of more than 1 million individuals monitored over 15 years. Notably, the cardiac glycoside digoxin and other drugs identified in this epidemiological study are sufficient to alter microbiome composition and risk of Salmonella enterica subsp. Typhimurium (S. Tm) infection in mice. The impact of digoxin treatment on S. Tm infection is transmissible via the microbiome, and characterization of this interaction highlights a digoxin-responsive b-defensin that alters microbiome composition and consequent immune surveillance of the invading pathogen. Combining epidemiological and experimental approaches thus provides an opportunity to uncover drug-host-microbiome-pathogen interactions that increase infection risk in human populations.
Project description:A novel coronavirus pneumonia, first identified in Wuhan City and referred to as COVID-19 by the World Health Organization, has been quickly spreading to other cities and countries. To control the epidemic, the Chinese government mandated a quarantine of the Wuhan city on January 23, 2020. To explore the effectiveness of the quarantine of the Wuhan city against this epidemic, transmission dynamics of COVID-19 have been estimated. A well-mixed "susceptible exposed infectious recovered" (SEIR) compartmental model was employed to describe the dynamics of the COVID-19 epidemic based on epidemiological characteristics of individuals, clinical progression of COVID-19, and quarantine intervention measures of the authority. Considering infected individuals as contagious during the latency period, the well-mixed SEIR model fitting results based on the assumed contact rate of latent individuals are within 6-18, which represented the possible impact of quarantine and isolation interventions on disease infections, whereas other parameter were suppose as unchanged under the current intervention. The present study shows that, by reducing the contact rate of latent individuals, interventions such as quarantine and isolation can effectively reduce the potential peak number of COVID-19 infections and delay the time of peak infection.
Project description:Respiratory failure and mortality from COVID-19 result from virus- and inflammation-induced lung tissue damage. The intestinal microbiome and associated metabolites are implicated in immune responses to respiratory viral infections, however their impact on progression of severe COVID-19 remains unclear. We prospectively enrolled 71 patients with COVID-19 associated critical illness, collected fecal specimens within 3 days of medical intensive care unit admission, defined microbiome compositions by shotgun metagenomic sequencing, and quantified microbiota-derived metabolites (NCT 04552834). Of the 71 patients, 39 survived and 32 died. Mortality was associated with increased representation of Proteobacteria in the fecal microbiota and decreased concentrations of fecal secondary bile acids and desaminotyrosine (DAT). A microbiome metabolic profile (MMP) that accounts for fecal secondary bile acids and desaminotyrosine concentrations was independently associated with progression of respiratory failure leading to mechanical ventilation. Our findings demonstrate that fecal microbiota composition and microbiota-derived metabolite concentrations can predict the trajectory of respiratory function and death in patients with severe SARS-Cov-2 infection and suggest that the gut-lung axis plays an important role in the recovery from COVID-19.
Project description:The COVID-19 pandemic caused by SARS-CoV-2 has reached 5.5 million deaths worldwide, causing a huge impact globally. This highly contagious viral infection produces a severe acute respiratory syndrome that includes cough, mucus, fever and pneumonia. Likewise, many hospitalized patients develop severe pneumonia associated with acute respiratory distress syndrome (ARDS), besides an exacerbated and uncontrolled systemic inflammation which in some cases induce lethal cytokine storm. Although vaccines have clearly had a beneficial effect on disease development, there is still a high percentage of patients who develop pathology related to ineffective immune system response. Therefore, a thorough understanding of the modulatory mechanisms that regulate the response to SARS-CoV-2 is crucial to find effective therapeutic alternatives. Previous studies describe the relevance of Neddylation in immune system activation further its implications in viral infection. In this context, the present study postulates Neddylation, a reversible ubiquitin-like post-translational modification of proteins and controls their stability, localization and activity, as a key regulator in the immune response against SARS-CoV-2. For the first time, we describe an increase of serum global neddylation levels of COVID-19 patients particularly associated in the early response of the infection. In addition, the results showed that overactivation of neddylation control activation, proliferation, and response of peripheral blood mononuclear cells (PBMCs) derived from COVID-19 patients. Inhibition of neddylation and subsequent avoidance of activation of PBMCs, which reduces cytokine production and proteome modulation, may therefore be a critical mechanism and an efficient therapeutic approach to immunomodulate COVID -19 patients and avoid the much-feared cytokine storm.
Project description:To delineate the in situ immune responses to SARS-CoV-2 viral infection, we performed comprehensive immune profiling in COVID-19 decedents. In this study, we described the immune microenvironment of COVID-19 patients through transcriptome sequencing.
Project description:To delineate the in situ immune responses to SARS-CoV-2 viral infection, we performed comprehensive immune profiling in COVID-19 decedents. In this study, we described the immune microenvironment of COVID-19 patients through transcriptome sequencing.