Project description:Streptococcus gallolyticus subsp. gallolyticus is a commensal of the human gastrointestinal tract and a pathogen of infective endocarditis and other biofilm-associated infections with exposed collagen. Therefore, this study focuses on the characterization of the biofilm formation and collagen adhesion of S. gallolyticus subsp. gallolyticus under different conditions. It has been observed that lysozyme triggers biofilm formation divergently in the analyzed S. gallolyticus subsp. gallolyticus strains. The transcriptome analysis was performed for two strains which form more biofilm in the presence of lysozyme. Lysozyme leads to higher expression of genes of transcription and translation, of the dlt operon (cell wall modification), of hydrogen peroxide resistance proteins and of two immunity proteins which could be involved in biofilm formation. Furthermore, the adhesion ability of 73 different S. gallolyticus subsp. gallolyticus strains to collagen type I and IV was analyzed. High adhesion ability was observed for the strain UCN 34, whereas the strain DSM 16831 adhered only marginally to collagen. The full genome microarray analysis revealed strain-dependent gene expression due to adhesion. The expression of genes of a transposon and a phage region in strain DSM 16831 were increased, which corresponds to lateral gene transfer. Adherence to collagen leads to a change in the expression of genes of nutrients uptake in the strain UCN 34.
Project description:Isoprene-metabolizing bacteria represent a global regulator for atmospheric isoprene concentrations. Under anoxic conditions, isoprene can be used as an electron acceptor reducing it to methylbutene. This study describes the proteogenomic profiling of an isoprene reducing enrichment culture to identify organisms and genes responsible for the isoprene hydrogenation reaction. A metagenome assembled genome (MAG) of the most abundant (88 % rel. abundance) lineage in the enrichment, Acetobacterium wieringae, was obtained. Comparative proteogenomics and RT-PCR identified a five-gene operon from the A. wieringae MAG upregulated during isoprene reduction. The operon encodes a putative oxidoreductase, three pleiotropic nickel chaperones (HypA, HypA, HypB) and one 4Fe-4S ferredoxin. The oxidoreductase is proposed as the putative isoprene reductase with a binding site for NADH, FAD as well as two pairs of [4Fe-4S]-clusters. Other Acetobacterium strains (A. woodii DSM 1030, A. wieringae DSM 1911, A. malicum DSM 4132 and A. dehalogenans DSM 11527) do not encode the isoprene reduction operon and could not reduce isoprene. Uncharacterized homologs of the putative isoprene reductase are observed across the Firmicutes, Spirochaetes, Tenericutes, Actinobacteria, Chloroflexi, Bacteroidetes and Proteobacteria, suggesting the ability of biohydrogenation of non-functionalized conjugated doubled bonds in other unsaturated hydrocarbons.