Project description:Investigation of whole genome transcription expression level changes in Drosophila mojavensis wild-type populations (1 Punta Onah: PO, 2 Organ Pipe National Monument: OPNM, 3 Punta Prieta:PP, and 4 San Quintin: SQ). The experiment was designed to investigate functional genomic responses to temperature variation (15, 25, and 35 °C) in adult Drosophila mojavensis wild populations. For each treatment 1-5 replicates were used (R1, R2, R3, R4 & R5). SO and BC represents Sonora deserts and Baja California region respectively.
Project description:In the presence of environmental change, natural selection can shape the transcriptome. Under a scenario of environmental change, genotypes that are better able to modulate gene expression to maximize fitness will tend to be favored. Therefore, it is important to examine gene expression at the population level in order to distinguish random or neutral gene expression variation from the pattern produced by natural selection. This study investigates the natural variation in transcriptional response to a cactus host shift utilizing the mainland Sonora population of Drosophila mojavensis. Drosophila mojavensis is a cactophilic species composed of four cactus host populations endemic to the deserts of North America. Overall, the change in cactus host was associated with a significant reduction in larval viability, as well as the differential expression of 21% of the genome (3,109 genes). Among the genes identified were a set of genes previously known to be involved in xenobiotic metabolism, as well as genes involved in cellular energy production, oxidoreductase/carbohydrate metabolism, structural components and mRNA binding. Interestingly, of the 3,109 genes whose expression was affected by host use, there was a significant overrepresentation of genes that lacked an orthologous call to the D. melanogaster genome, suggesting the possibility of an accelerated rate of evolution in these genes. Of the genes with a significant cactus effect, the majority, 2,264 genes, did not exhibit a significant cactus-by-line interaction. This population level approach facilitated the identification of genes involved in past cactus host shifts. Dataset from Population transcriptomics of cactus host shifts in Drosophila mojavensis, Matzkin, LM. Molecular Ecology.
Project description:In Drosophila, adaptation to xeric environments presents many challenges, greatest among them the maintenance of water balance. Drosophila mojavensis, a cactophilic species from the deserts of North America, is one of the most desiccation-resistant in the genus, surviving low humidity primarily by reducing its metabolic rate. Genetic control of reduced metabolic rate, however, has yet to be elucidated. We utilized the recently sequenced genome of D. mojavensis to create an oligonucleotide microarray in order to pursue the identities of the genes involved in metabolic regulation during desiccation. We observed large differences in gene expression between male and female D. mojavensis as well as both quantitative and qualitative sex differences in their ability to survive xeric conditions. As expected, genes associated with metabolic regulation and carbohydrate metabolism were differentially regulated between stress treatments. Most importantly, we identified four points in central metabolism (Glyceraldehyde 3-phosphate dehydrogenase, transaldolase, alcohol dehydrogenase and phosphoenolpyruvate carboxykinase) that indicate the potential mechanisms controlling metabolic rate reduction associated with desiccation resistance. Furthermore, a large number of genes associated with vision pathways also were differentially expressed between stress treatments, especially in females, that may underlie the initial detection of stressful environments and trigger subsequent metabolic changes. Dataset from Transcriptional regulation of metabolism associated with the increased desiccation resistance of the cactophilic Drosophila mojavensis Matzkin,LM and Markow, MA, Genetics.