Project description:Accumulation of oxalate in patients with chronic kidney disease (CKD) is associated with CKD progression and an increased risk of cardiac death. Whether reducing oxalate slows CKD progression and prevents cardiovascular complications remains unexplored. We colonized Oxalobacter formigenes (Oxf), an oxalate-degrading microbiome, in the intestines of control and CKD mice fed with 1% hydroxyproline for 23 weeks. RNA-seq analysis of heart tissues of CKD mice reveals dysregulated expression of metabolic pathways and Oxf colonization reverses these changes. These findings demonstrate that oxalate accumulation plays a role not only in CKD progression but also in cardiovascular complications.
Project description:The lack of Oxalobacter formigenes colonization in the human gut is generally acknowledged as a risk factor for kidney stone formation since this microorganism can play an important role in oxalate homeostasis. Here, we present the genome sequence of OXCC13, a human strain isolated from an individual residing in Germany.
Project description:Colonization of the intestine with Oxalobacter formigenes reduces urinary oxalate excretion and lowers the risk of forming calcium oxalate kidney stones. Here, we report the genome sequence of Oxalobacter formigenes SSYG-15, a strain isolated from a stool sample from a healthy Chinese boy.
Project description:The lack of Oxalobacter formigenes colonization of the human gut has been correlated with the formation of calcium oxalate kidney stones and also with the number of recurrent kidney stone episodes. Here, we present the genome sequence of HC-1, a human strain isolated from an individual residing in Iowa, USA.
Project description:Oxalobacter formigenes (O. formigenes) is a nonpathogenic, Gram-negative, obligate anaerobic bacterium that commonly inhabits the human gut and degrades oxalate as its major energy and carbon source. Results from a case-controlled study suggested that lack of O. formigenes colonization is a risk factor for recurrent calcium oxalate stone formation. Hence, O. formigenes colonization may prove to be an efficacious method for limiting calcium oxalate stone risk. However, challenges exist in the preparation of O. formigenes as a successful probiotic due to it being an anaerobe with fastidious growth requirements. Here we examine in vitro properties expected of a successful probiotic strain. The data show that the Group 1 O. formigenes strain OxCC13 is sensitive to pH < 5.0, persists in the absence of oxalate, is aerotolerant, and survives for long periods when freeze-dried or mixed with yogurt. These findings highlight the resilience of this O. formigenes strain to some processes and conditions associated with the manufacture, storage and distribution of probiotic strains.