Project description:Oilseed rape is both an important oleaginous crop and agriculture sightseeing crop whereas has relatively scanty flower color. As natural flavonoids, Anthocyanin are responsible for the attractive red, purple, and blue colors of various tissues in higher plants, especially for the ornamental plants flower. One Brassica napus-Orychophragmus violaceus disomic addition line (M4) obtained previously exhibits red petals whichresult from anthocyanin biosynthesis. Transcriptome analysis of M4, B. napus (H3), natural individuals of O. violaceus with purple petals (OvP) and white petals (OvW) revealed that most of structural genes for the anthocyanin synthesis were up-regulated in both M4 and OvP, especially key gene ANS in the last step. Reads assembling and sequence alignment showed that the regulatory DEG PAP2 in M4 was from the transcript of O. violaceus. OvPAP2 was transformed into Arabidopsis thaliana and B. napus driven by the CaMV35S promoter and the rape petal-specific prompter XY355. Transgenic A. thaliana plants showed different levels of purple pigments in most of the organs, including the petals, and transgenic B. napus flowers exhibited restricted accumulation of anthocyanins in stamens when driven by CaMV35S promoter, but generated both red petals and anthers driven by the XY355 promoter. These results provided a platform for expounding the anthocyanin biosynthesis pathway in B. napus petals and give a successful case for flower color modification of the agriculture sightseeing rape.
Project description:Transcription profiling of Brassica rapa, Brassica oleracea and Brassica napus I and II The nuclear genomes of the resynthesised B. napus lines should be identical but, as one (B. napus I) involved a cross of B. oleracea onto B. rapa, and the other (B. napus II) involved a cross of B rapa onto B. oleracea, they differ in cytoplasm, and hence contain different chloroplast and mitochondrial genomes.
Project description:Understanding the regulation of lipid metabolism is vital for genetic engineering of Brassica napus (B. napus) to increase oil yield or modify oil composition. We report the application of Illumina Hiseq 2000 for transcriptome profiling of seeds of B. napus at different developmental stages, which may uncover the dynamic changes in lipid metabolism and reveal key genes involved in lipid biosynthesis and degradation. Total RNA from developing seeds at 2, 4, 6, and 8 weeks after pollination (WAP) were isolated and sequenced separately. The gene expression levels of all samples were quantified and normalized by the DESeq normalization. We found that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. Two genes, encoding for acetyl-CoA carboxylase and acyl-ACP desaturase, might be critical for fatty acid biosynthesis in oil rape seeds. This study provides insight into the mechanism underlying lipid metabolism and reveals candidate genes that are worthy of further investigation for their values in genetic engineering of B. napus. Whole Transcriptome profiling of developing Brassica napus seeds at 2, 4, 6, 8 WAP by RNA sequencing using Illumina HiSeq 2000.
Project description:Tissue-specific RNA profiling of the Brassica napus funiculus and funicular subcompartments using laser microdissection and RNA-sequencing
Project description:MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development and seed formation. In Brassica napus, an important edible oil crop, valuable lipids are synthesized and stored in specific seed tissues during embryogenesis. The miRNA transcriptome of B. napus is currently poorly characterized, especially at different seed developmental stages. This work aims to describe the miRNAome of developing seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus developing seeds. A total of 62 miRNA families were detected through a computational analysis of a large number of reads obtained from deep sequencing two small RNA and two RNA-seq libraries of (i) pooled immature developing stages and (ii) mature B. napus seeds. Among these miRNA families, 17 families are currently known to exist in B. napus; additionally, 32 families not reported in B. napus but conserved in other plant species were identified by alignment with known plant mature miRNAs. The contigs from the assembled mRNA-seq data allowed for a search for putative new precursors and led to the identification of 13 novel miRNA families. Differential expression between the libraries was determined through a statistical analysis of normalized miRNA reads and revealed several miRNAs and isomiRNAs that were more abundant during the developing stages. The predicted miRNA target genes encode a broad range of proteins related to seed development and energy storage. This work presents a comprehensive study of the miRNA transcriptome of B. napus seeds and will provide a basis for future research on more targeted studies of individual miRNAs and their functions in embryogenesis, seed maturation and lipid accumulation in B. napus. microRNA profiles in 2 different seed libraries (mature seeds and a pool of developing seed stages) of Brassica napus by deep sequencing (Illumina HiSeq2000).
Project description:MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development and seed formation. In Brassica napus, an important edible oil crop, valuable lipids are synthesized and stored in specific seed tissues during embryogenesis. The miRNA transcriptome of B. napus is currently poorly characterized, especially at different seed developmental stages. This work aims to describe the miRNAome of developing seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus developing seeds. A total of 62 miRNA families were detected through a computational analysis of a large number of reads obtained from deep sequencing two small RNA and two RNA-seq libraries of (i) pooled immature developing stages and (ii) mature B. napus seeds. Among these miRNA families, 17 families are currently known to exist in B. napus; additionally, 32 families not reported in B. napus but conserved in other plant species were identified by alignment with known plant mature miRNAs. The contigs from the assembled mRNA-seq data allowed for a search for putative new precursors and led to the identification of 13 novel miRNA families. Differential expression between the libraries was determined through a statistical analysis of normalized miRNA reads and revealed several miRNAs and isomiRNAs that were more abundant during the developing stages. The predicted miRNA target genes encode a broad range of proteins related to seed development and energy storage. This work presents a comprehensive study of the miRNA transcriptome of B. napus seeds and will provide a basis for future research on more targeted studies of individual miRNAs and their functions in embryogenesis, seed maturation and lipid accumulation in B. napus. RNA profiles in 2 different seed libraries (mature seeds and a pool of developing seed stages) of Brassica napus by deep sequencing (Illumina HiSeq2000).
Project description:Global transcriptome profiling of suceptible and tolerant lines of Brassica napus infected with Sclerotinia sclerotiorum using a petal inoculation method that mimics field conditions.
Project description:ngs2017_08_brasilice-transilice - What are the genes with modulated expression in response to brassica napus treatment (1.7mM, One week, root supply)-Brassica napus were grown on hydropnic conditions using Hoagland nutrient solution containing or not 1.7 mM of Si
Project description:Transcription profiling of Brassica rapa, Brassica oleracea and Brassica napus I and II The nuclear genomes of the resynthesised B. napus lines should be identical but, as one (B. napus I) involved a cross of B. oleracea onto B. rapa, and the other (B. napus II) involved a cross of B rapa onto B. oleracea, they differ in cytoplasm, and hence contain different chloroplast and mitochondrial genomes. Four-condition experiment, comparison of transcription profiles of the genomes. Four biological replicates were used, independently grown and harvested. One replicate per array.
Project description:mRNA expression profiling of the embryo, endosperm (micropylar, peripheral, chalazal), and seed coat (outer, inner, chalazal, chalazal proliferating tissue) of the developing Brassica napus seed. Tissues were isolated using laser microdissection (LMD) from Brassica napus seeds at the globular, heart, and mature green stages of seed development.