Project description:The gut microbiome's pivotal role in health and disease is well-established. SARS-CoV-2 infection often causes gastrointestinal symptoms and is associated with changes of the microbiome in both human and animal studies. While hamsters serve as important animal models for coronavirus research, there exists a notable void in the functional characterization of their microbiomes with metaproteomics. In this study, we present a workflow for analyzing the hamster gut microbiome, including a metagenomics-derived hamster gut microbial protein database and a data-independent acquisition metaproteomics method. Using this workflow, we identified 32419 protein groups from the fecal microbiomes of young and old hamsters infected with SARS-CoV-2. We showed age-specific changes in the expressions of microbiome functions and host proteins associated with microbiomes, providing further functional insight into the dysbiosis and aberrant cross-talks between the microbiome and host in SARS-CoV-2 infection. Altogether this study established and demonstrated the capability of metaproteomics for the study of hamster microbiomes.
Project description:Environmental influences such as infections and dietary changes strongly affect a host’s microbiota. In the steady state, however, host genetics may influence the microbiota composition, as suggested by the greater similarity between the microbiomes of identical twin pairs compared to non-identical twins. Understanding the role of polymorphic mechanisms in regulating the commensal communities is complicated by the variability of human genomes and microbiomes, and by microbial sensitivity to the environment. Animal studies allow genetic modifications, but are also sensitive to influences known as ‘cage’ or ‘legacy’ effects. Here, we analyzed ex-germ-free mice of various genetic backgrounds, including immunodeficient and Major Histocompatibility Complex (MHC)-congenic strains repopulated with identical input microbiota. We found that the host’s genetic polymorphic mechanisms did indeed affect the gut microbiome and that both innate (e.g. anti-microbial peptides, complement, pentraxins and enzymes affecting microbial survival), as well as adaptive (both MHC-dependent and MHC-independent) pathways influenced the microbiota. These polymorphic mechanisms regulated only a limited number of microbial lineages (independently of their abundance). In addition, our comparative analyses suggested that some microbes might benefit from the specific immune responses that they elicit.
Project description:The model prokaryote Escherichia coli can exist as a either a commensal or a pathogen in the gut of diverse mammalian hosts. These associations, coupled with its ease of cultivation and genetic variability, have made E. coli a popular indicator organism for tracking the origin of fecal water contamination. Source tracking accuracy is predicated on the assumption that E. coli isolates recovered from contaminated water present a genetic signature characteristic of the host from which they originated. In this study, we compared the accuracy with which E. coli isolated from humans, bear, cattle and deer could be identified by standard fingerprinting methods used for library-based microbial source tracking (repetitive element PCR and pulsed-field gel electrophoresis) in relation to microarray-based analysis of genome content. Our results show that patterns of gene presence or absence were more useful for distinguishing E. coli isolates from different sources than traditional fingerprinting methods, particularly in the case of human strains. Host-associated differences in genome composition included the presence or absence of mobile IS1 elements as well as genes encoding the ferric dicitrate iron transporter (fec), E. coli common pilus (ECP), type 1 fimbriae and the CRISPR associated cas proteins. Many of these differences occurred in regions of the E. coli chromosome previously shown to be “hot spots” for the integration of horizontally-acquired DNA. PCR primers designed to amplify the IS1 and fec loci confirmed array results and demonstrated the ease with which gene presence/absence data can be converted into a diagnostic assay. The data presented here suggest that, despite the high level of genetic diversity observed among isolates by PFGE, human-derived strains may constitute a distinct ecotype distinguished by multiple potential library-independent source tracking markers.
Project description:Metaproteomics approach was used to investigate the microbial community and diversity of the infant gut to identify different key proteins with metabolic functional roles in the microbiomes of healthy and atopic dermatitis infants in a Thai population-based birth cohort.
Project description:Fermenting microbial communities generate hydrogen: its removal through production of acetate, methane, or hydrogen sulfide modulates the efficiency of energy extraction from available nutrients in many ecosystems. We noted that pathway components for acetogenesis are more abundantly and consistently represented in the gut microbiomes of monozygotic twins and their mothers than components for methanogenesis or sulfate reduction, and subsequently analyzed the metabolic potential of two sequenced human gut acetogens, Blautia hydrogenotrophica and Marvinbryantia formatexigens in vitro and in the intestines of gnotobiotic mice harboring a prominent saccharolytic bacterium. To do so, we developed a generally applicable method for multiplex sequencing of expressed microbial mRNAs, and together with mass spectrometry of metabolites, show that these organisms have distinct patterns of substrate utilization. B. hydrogenotrophica targets aliphatic and aromatic amino acids. It increases the efficiency of fermentation by consuming reducing equivalents, thereby maintaining a high NAD+/NADH ratio and boosting acetate production. In contrast, M. formatexigens consumes oligosaccharides, does not impact the redox state of the gut, and boosts the yield of succinate. These findings have strategic implications for those who wish to manipulate the hydrogen economy of gut microbial communities in ways that modulate energy harvest. 119 Samples consisting of Bacteroides thetaiotaomicron, Marvinbryantia formatexigens, and Blautia hydrogenotrophica cecal and fecal samples. Please see the individual Sample descriptions for more information.
Project description:The model prokaryote Escherichia coli can exist as a either a commensal or a pathogen in the gut of diverse mammalian hosts. These associations, coupled with its ease of cultivation and genetic variability, have made E. coli a popular indicator organism for tracking the origin of fecal water contamination. Source tracking accuracy is predicated on the assumption that E. coli isolates recovered from contaminated water present a genetic signature characteristic of the host from which they originated. In this study, we compared the accuracy with which E. coli isolated from humans, bear, cattle and deer could be identified by standard fingerprinting methods used for library-based microbial source tracking (repetitive element PCR and pulsed-field gel electrophoresis) in relation to microarray-based analysis of genome content. Our results show that patterns of gene presence or absence were more useful for distinguishing E. coli isolates from different sources than traditional fingerprinting methods, particularly in the case of human strains. Host-associated differences in genome composition included the presence or absence of mobile IS1 elements as well as genes encoding the ferric dicitrate iron transporter (fec), E. coli common pilus (ECP), type 1 fimbriae and the CRISPR associated cas proteins. Many of these differences occurred in regions of the E. coli chromosome previously shown to be M-bM-^@M-^\hot spotsM-bM-^@M-^] for the integration of horizontally-acquired DNA. PCR primers designed to amplify the IS1 and fec loci confirmed array results and demonstrated the ease with which gene presence/absence data can be converted into a diagnostic assay. The data presented here suggest that, despite the high level of genetic diversity observed among isolates by PFGE, human-derived strains may constitute a distinct ecotype distinguished by multiple potential library-independent source tracking markers. Twelve isolates of E. coli ( 3 from bear, 3 from cattle, 3 from deer and 3 from humans) were isolated from feces and/or raw sewage. Genome content for each strain was assessed in duplicate using comparative genome hybridization with E. coli K12 MG1655 as the reference for a total of 24 arrays.
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. The results were used to demonstarte the usefulness of applying HuMiChip to human microbiome studies.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome.
Project description:Fermenting microbial communities generate hydrogen: its removal through production of acetate, methane, or hydrogen sulfide modulates the efficiency of energy extraction from available nutrients in many ecosystems. We noted that pathway components for acetogenesis are more abundantly and consistently represented in the gut microbiomes of monozygotic twins and their mothers than components for methanogenesis or sulfate reduction, and subsequently analyzed the metabolic potential of two sequenced human gut acetogens, Blautia hydrogenotrophica and Marvinbryantia formatexigens in vitro and in the intestines of gnotobiotic mice harboring a prominent saccharolytic bacterium. To do so, we developed a generally applicable method for multiplex sequencing of expressed microbial mRNAs, and together with mass spectrometry of metabolites, show that these organisms have distinct patterns of substrate utilization. B. hydrogenotrophica targets aliphatic and aromatic amino acids. It increases the efficiency of fermentation by consuming reducing equivalents, thereby maintaining a high NAD+/NADH ratio and boosting acetate production. In contrast, M. formatexigens consumes oligosaccharides, does not impact the redox state of the gut, and boosts the yield of succinate. These findings have strategic implications for those who wish to manipulate the hydrogen economy of gut microbial communities in ways that modulate energy harvest.