Project description:The gill tissues of two congeneric oyster species (Crassostrea gigas and Crassostrea angulata) was collected before and after heat stress (35℃ 12h) to conduct the proteomic and phosphoproteomic analysis
Project description:Thermal exposure of sessile marine animals inhabiting estuarine intertidal regions is a matter of serious concern. The Hong Kong oyster, Crassostrea hongkongensis is one of the dominant sessile inhabitants of marine intertidal region which undergoes large seasonal temperature fluctuations every year. The oyster has developed several adaptation mechanisms to cope with acute thermal stress. However, the genetic basis of these mechanisms remain largely unclear. To better understand how acute thermal exposure affects the biology of the oyster, two cDNA libraries obtained from the gill of oysters exposed to thermal stress and ambient temperature were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. In total, 5.9 and 6.2 million reads were obtained for thermal stress and control libraries respectively, with approximately 74.25% and 75.02 % of the reads mapping to the C. hongkongensis reference sequence. A total of 605 differentially expressed transcripts could be detected in the thermal stress group as compared to the control group, of which 378 are up-regulated and 227 are down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these Differentially Expressed Genes (DEGs) were enriched with a broad spectrum of biological processes and pathways, including those associated with chaperones, antioxidants, immunity, apoptosis and cytoskeletal reorganization. Among these significantly enriched pathways, protein processing in the endoplasmic reticulum was the most affected metabolic pathway, which plays an important role in the unfolded protein response (UPR) and ER-associated degradation (ERAD) processes. Our results demonstrate the complex multi-modal cellular response to thermal stress in C. hongkongensis.
Project description:The Pacific oyster Crassostrea gigas, a commercially important species inhabiting the intertidal zone, can tolerate temperature fluctuations. Heat shock transcription factor 1 (HSF1) plays an important role in the process of resistance of thermal stress. However, HSF1 has not been fully characterized in the Pacific oyster. C. gigas with an expansion of heat shock protein (HSP) 70. In this study, we analyzed genes regulated by HSF1 in response to heat shock by Chromatin immunoprecipitation followed sequencing (ChIP-seq), determined the expression patterns of target genes by qRT-PCR, and validated the regulatory relationship between one HSP70 and HSF1. We found 916 peaks corresponding to specific binding sites of HSF1, and peaks were annotated to nearest genes. In Gene Ontology analysis, HSF1 target genes was related to signal transduction, energy production, and response to biotic stimulus. Four HSP70 genes, two HSP40 genes, and one small HSP gene exhibited binding to HSF1. One HSP70 with a binding site in the promoter region was validated to be regulated by HSF1 under heat shock. These results provide a basis for future studies aimed at determining the mechanisms underlying thermal tolerance and provide insights into gene regulation in the Pacific oyster.
2020-10-16 | GSE138959 | GEO
Project description:ATAC-Seq and RNA-Seq of two congeneric oyster species under heat stress
Project description:Vampire bats and snakes have taken thermosensation to the extreme by developing specialized systems for detecting infrared radiation. As such, these creatures provide a window into the molecular and genetic mechanisms underlying evolutionary tuning of thermoreceptors in a species or cell type specific manner. In each case, robust thermal sensitivity likely reflects specialized anatomical features of infrared sensing pit organs, as well as intrinsic heat sensitivity of trigeminal nerve fibers that innervate these structures. Here we show that vampire bats use a molecular strategy involving alternative splicing of the TRPV1 gene to generate a channel specifically within trigeminal ganglia that has a reduced thermal activation threshold. Selective expression of splicing factors in trigeminal, but not dorsal root ganglia, together with unique organization of the vampire bat TRPV1 gene underlies this mechanism of sensory adaptation. Comparative genomic analysis of the TRPV1 locus supports phylogenetic relationships within the proposed Pegasoferae clade of mammals. Gene expression measurements implicate a TRPV1 splice isoform as the heat-sensitive channel in vampire bats
Project description:Originating from Northeast Asia, the Pacific oyster Crassostrea gigas has been introduced into a large number of countries for aquaculture purpose. Following introduction, the Pacific oyster has turned into an invasive species in an increasing number of coastal areas, notably in Northern Europe. To explore adaptation on reproductive traits of population considered as invasive, we set up a common garden experiment based on the comparison of progenies from two populations of Pacific oyster sampled in France and Denmark. A female-biased sex-ratio and a higher condition index were observed in the Danish progeny, possibly reflecting an evolutionary reproductive strategy to increase the potential success of natural recruitment in recently settled population. Using multifarious statistical approaches and accounting for sex differences we identified several genes differentially expressed between the Danish and French progenies, and with an intermediate expression level in hybrids (additive behavior). Candidate transcripts included mRNA coding for sperm quality and insulin metabolism known to be implicated in coordinated control of reproduction. Our results suggest adaptation of invasive populations during expansion acting on reproductive traits, and in particular on a female-biased sex-ratio, fertility and gamete quality.
Project description:Originating from Northeast Asia, the Pacific oyster Crassostrea gigas has been introduced into a large number of countries for aquaculture purpose. Following introduction, the Pacific oyster has turned into an invasive species in an increasing number of coastal areas, notably in Northern Europe. To explore adaptation on reproductive traits of population considered as invasive, we set up a common garden experiment based on the comparison of progenies from two populations of Pacific oyster sampled in France and Denmark. A female-biased sex-ratio and a higher condition index were observed in the Danish progeny, possibly reflecting an evolutionary reproductive strategy to increase the potential success of natural recruitment in recently settled population. Using multifarious statistical approaches and accounting for sex differences we identified several genes differentially expressed between the Danish and French progenies, and with an intermediate expression level in hybrids (additive behavior). Candidate transcripts included mRNA coding for sperm quality and insulin metabolism known to be implicated in coordinated control of reproduction. Our results suggest adaptation of invasive populations during expansion acting on reproductive traits, and in particular on a female-biased sex-ratio, fertility and gamete quality. A common garden experiment was performed in order to compare progenies from two populations of Pacific oyster sampled in France and Denmark and their hybrids. Progenies were reared under standard hatchery and nursery conditions until gonadal maturation. The employed arrays were Agilent 60-mer 4x44K custom microarrays, containing 31,918 C. gigas ESTs, designed by Dheilly et al. (2011).
Project description:Is is a fundamental evolutionary question which coordinated molecular changes underly adaptation generally and thermal adaptation specifically. Here we profiled the proteome of the Planarian glacial relict species Crenobia alpina. We sampled individuals from an alpine spring, acclimated groups of individuals at 8, 11, 14 and 17 °C for one week and determined their proteome. These results give insight into the molecular mechanisms underlying thermal adaptation and acclimation to cold and warm temperatures.
2022-07-28 | PXD024592 | Pride
Project description:Genetic mechanism of thermal adaptation in redband trout