Project description:In the seabed, chemical defences mediate inter- and intraspecific interactions and may determine organisms’ success, shaping the diversity and function of benthic communities. Sponges represent a prominent example of chemically-defended marine organisms with great ecological success. The ecological factors controlling the production of their defensive compounds and the evolutionary forces that select for these defences remain little understood. Each sponge species produces a specific and diverse chemical arsenal with fish-deterrent, antifouling and antimicrobial properties. However, some small animals (mesograzers), mainly sea slugs, have specialized in living and feeding on sponges. Feeding on chemically-defended organisms provides a strategy to avoid predators, albeit the poor nutritional value of sponges. In order to investigate the mechanisms that control sponge chemical defence, with particular focus on the response to specialist grazers, we investigated the interaction between the sponge Aplysina aerophoba and the sea slug Tylodina perversa. Here we performed controlled experiments and collected sponge samples at different time points (3h, 1d and 6d after treatment). To further elucidate if the sponge response is specific to grazing by T. perversa, we also included a treatment in which sponges were mechanically damaged with a scalpel. We compared gene expression between treatments based on RNA-Seq data.
Project description:The Lucinidae is a large family of marine bivalves. They occur in diverse habitats from shallow-water seagrass sediments to deep-sea hydrothermal vents. All members of this family so far investigated host intracellular sulfur-oxidizing symbionts that belong to the Gammaproteobacteria. We recently discovered the capability for nitrogen fixation in draft genomes of the symbionts of Loripes lucinalis from the Bay of Fetovaia, Elba, Italy. With proteomics, we investigated whether the genes for nitrogen fixation are expressed by the symbionts.