Project description:Asymmetrical end structures of leading and lagging telomeres in Saccharomyces cerevisiae dictate the nature of the end replication problem
| PRJNA1193986 | ENA
Project description:Asymmetrical end structures of leading and lagging telomeres in Saccharomyces cerevisiae dictate the nature of the end replication problem
Project description:The end replication problem refers to the incomplete replication of parental DNA at telomeres, a process whose molecular depiction is hampered by the complex nature of telomere ends. Here we recapitulate this process using a synthetic de novo telomere in Saccharomyces cerevisiae and delineate distinct molecular fates of telomere ends in vivo. We show that the lagging-strand telomeres carry a ~10-nucleotide 3’ overhang, while the leading-strand telomeres have a Yku-protected blunt end, a feature that is common to native telomeres. Additionally, RNase H2 is primarily responsible for removing the terminal RNA primer. Consistently, the absence of RNase H2 activity results in the retention of the RNA primer on the lagging-strand telomere, which attenuates telomere erosion and delays senescence in telomerase-null cells. These findings highlight incongruent end structures on yeast telomeres and clarify that the primary culprit behind the end replication problem is the incompletely replicated lagging-strand telomere.
Project description:Telomere end-protection by the shelterin complex prevents DNA damage signalling and promiscuous repair at chromosome ends. Evidence suggests that the 3’ single-stranded telomere end can assemble into a lasso-like t-loop configuration, which has been proposed to safeguard chromosome ends from being recognized as DNA double strand breaks. Mechanisms must also exist to transiently disassemble t-loops to allow faithful telomere replication and to permit telomerase access to the 3’-end to solve the end replication problem. However, the regulation and physiological importance of t-loops in end-protection remains uncertain. Here, we identify a CDK phosphorylation site in the shelterin subunit, TRF2 (Ser365), whose dephosphorylation in S-phase by the PP6C/R3 phosphatase provides a narrow window during which the helicase RTEL1 is able to transiently access and unwind t-loops to facilitate telomere replication. Re-phosphorylation of TRF2 on Ser365 outside of S-phase is required to release RTEL1 from telomeres, which not only protects t-loops from promiscuous unwinding and inappropriate ATM activation, but also counteracts replication conflicts at DNA secondary structures arising within telomeres and across the genome. Hence, a phospho-switch in TRF2 coordinates assembly and disassembly of t-loops during the cell cycle, which protects telomeres from replication stress and an unscheduled DNA damage response.
Project description:How parental histone H3-H4 tetramers, the primary carrier of epigenetic modifications, are transferred to leading and lagging strands of DNA replication forks following DNA replication is an important question that remains not well understood. Here we show that DNA polymerase clamp PCNA and its partner involved in lagging strand DNA synthesis, Pol d, regulate parental histone transfer to lagging strands. Mutations at PCNA as well as at subunits of Pol d that impair the PCNA-Pol d interaction affect parental histone transfer to lagging strands, and this defect unlikely arises from their impacts on DNA synthesis. Moreover, Pol d interacts with H3-H4 in vitro. We suggest that the PCNA-Pol d complex, best known for its role in lagging strand DNA synthesis and DNA repair, couples lagging strand DNA synthesis to the transfer of the parental histones H3-H4 for the inheritance of chromatin structures following DNA replication and possibly DNA repair.
Project description:In response to DNA replication stress, DNA replication checkpoint is activated to maintain fork stability, a process critical for maintenance of genome stability. However, how DNA replication checkpoint regulates replication forks remain elusive. Here we show that Rad53, a highly conserved replication checkpoint kinase, functions to couple leading and lagging strand DNA synthesis. In wild type cells under HU induced replication stress, synthesis of lagging strand, which contains ssDNA gaps, is comparable to leading strand DNA. In contrast, synthesis of lagging strand is much more than leading strand, and consequently, leading template ssDNA coated with ssDNA binding protein RPA was detected in rad53-1 mutant cells, suggesting that synthesis of leading strand and lagging strand DNA is uncoupled. Mechanistically, we show that replicative helicase MCM and leading strand DNA polymerase Pole move beyond actual DNA synthesis and that an increase in dNTP pools largely suppresses the uncoupled leading and lagging strand DNA synthesis. Our studies reveal an unexpected mechanism whereby Rad53 regulates replication fork stability.
Project description:Faithful duplication of DNA is essential for the maintenance of genomic stability in all organisms. DNA synthesis proceeds bi-directionally with continuous synthesis of leading strand DNA and discontinuous synthesis of lagging strand DNA. Herein, we describe a method of enriching and Sequencing of Protein-Associated Nascent strand DNA (eSPAN) to detect whether a protein binds the leading- and lagging-strands of DNA replication forks. We show that Pol-epsilon, PCNA, Cdc45, Mcm6 and Mcm10 preferentially associate with leading strands, whereas Pol-alpha, Pol32, Pol-delta, Rfa1 and Rfc1 associate with lagging strands of hydroxyurea (HU)-stalled replication forks. In contrast, PCNA is enriched at lagging strands of normal replication forks in wild type cells and HU-stalled forks in cells lacking Elg1. These studies demonstrate a strategy to reveal proteins at leading and lagging strands of DNA replication forks, and suggest that the unloading of PCNA from lagging strands of HU-stalled replication forks helps maintain genome integrity. We synchronized yeast cells at G1 and released into early S phase in the presence of BrdU, a nucleotide analog that can be incorporated into newly synthesized DNA strand, and hydroxyurea (HU), a ribonucleotide reductase inhibitor. HU has no effect on initiation of DNA replication at early replication origins, but inhibit late replication firing. In addition, replication forks are stalled due to depletion of dNTPs. We then performed chromatin-immunoprecipitation of 12 proteins of interest following a standard procedure. Protein-bound DNAs were then reverse-crosslinked and double strand DNA was denatured. Nascent DNA was enriched by immunoprecipitation using anti-BrdU antibodies. The recovered ssDNA was first marked with ligation to one oligo at 3M-bM-^@M-^Y end before conversion to dsDNA for library preparation and sequencing. In this way, the directionality of ssDNA and therefore strand information of each sequenced DNA were known. The sequencing tag was mapped to both Watson (red) and Crick (blue) strands of the reference genome. In addition to ChIP-eSPAN, we also performed BrdU-IP and single strand DNA sequence (BrdU-ssSeq) and protein ChIP followed by single-strand DNA sequencing (ChIP-ssSeq) for each corresponding ChIP-eSPAN experiment. We also performed Mcm4 and Mcm6 ChIP-seq using cells synchronized at G1 phase of the cell cycle for identification of replication origins in comparison with published dataset. Some protein ChIP-ssSeq and ChIP-eSPAN experiments were repeated and the data fits well each other. Therefore, we did not repeat all protein ChIP-ssSeq and ChIP-eSPAN experiments.
Project description:Faithful duplication of DNA is essential for the maintenance of genomic stability in all organisms. DNA synthesis proceeds bi-directionally with continuous synthesis of leading strand DNA and discontinuous synthesis of lagging strand DNA. Herein, we describe a method of enriching and Sequencing of Protein-Associated Nascent strand DNA (eSPAN) to detect whether a protein binds the leading- and lagging-strands of DNA replication forks. We show that Pol-epsilon, PCNA, Cdc45, Mcm6 and Mcm10 preferentially associate with leading strands, whereas Pol-alpha, Pol32, Pol-delta, Rfa1 and Rfc1 associate with lagging strands of hydroxyurea (HU)-stalled replication forks. In contrast, PCNA is enriched at lagging strands of normal replication forks in wild type cells and HU-stalled forks in cells lacking Elg1. These studies demonstrate a strategy to reveal proteins at leading and lagging strands of DNA replication forks, and suggest that the unloading of PCNA from lagging strands of HU-stalled replication forks helps maintain genome integrity.
Project description:Telomeres are nucleoprotein structures at the ends of linear chromosomes. In humans, they consist of TTAGGG repeats, which are bound by dedicated proteins such as the shelterin complex. This complex blocks unwanted DNA damage repair at telomeres, e.g. by suppressing non-homologous end joining (NHEJ) through its subunit TRF2. We here describe ZNF524, a zinc finger protein that directly binds telomeric repeats with nanomolar affinity and reveal the base-specific sequence recognition by co-crystallization with telomeric DNA. ZNF524 localizes to telomeres and specifically maintains the presence of the TRF2/RAP1 subcomplex at telomeres without affecting other shelterin members. Loss of ZNF524 concomitantly results in an increase in DNA damage signaling and recombination events. Overall, ZNF524 is a direct telomere-binding protein involved in the maintenance of telomere integrity.
Project description:Telomeres are the nucleoprotein structures found at the ends of eukaryotic chromosomes. Conventional DNA polymerases are unable to fully replicate the telomeric end of the chromosome, which leads to a progressive loss of DNA after every cell division. This problem is solved by the ribonucleoprotein enzyme, telomerase. Proper maintenance of the telomeric end is critical for maintaining genome integrity in eukaryotes. The telomerase enzyme has two essential components: the telomerase RNA (TR), which provides the template required for telomeric DNA synthesis; and the catalytic protein telomerase reverse transcriptase (TERT) that catalyzes the extension of the telomeric DNA ends using the TR as a template. The action of telomerase prevents the progressive shortening of the telomeres after every cell division. The TR can form a large structural scaffold upon which many accessory proteins can bind to and form the complete telomerase holoenzyme in vivo. These accessory proteins are required for telomerase activity and regulation inside of cells. The interacting partners of the TERT protein have been extensively characterized in yeast, human, and Tetrahymena systems. These interactors have not been extensively studied in lower eukaryotes including clinically relevant human parasites, such as Trypanosoma brucei (T. brucei). To this end, we performed co-immunoprecipitation coupled to LC-MS/MS of TbTERT-FLAG-HA-HA from T. brucei cells using an anti-TbTERT antibody and protein G magnetic beads. An isotype matched IgG control was performed in tandem. Comparisons of enriched proteins in the IP vs. IgG control revealed previously known and novel interactors of TbTERT. These findings suggest potential mechanistic differences in telomere maintenance in T. brucei compared to higher eukaryotes.