Project description:Variation in pollinator foraging behavior can influence pollination effectiveness, community diversity, and plant-pollinator network structure. Although effects of interspecific variation have been widely documented, studies of intraspecific variation in pollinator foraging are relatively rare. Sex-specific differences in resource use are a strong potential source of intraspecific variation, especially in species where the phenology of males and females differ. Differences may arise from encountering different flowering communities, sex-specific traits, nutritional requirements, or a combination of these factors. We evaluated sex-specific foraging patterns in the eastern regal fritillary butterfly (Argynnis idalia idalia), leveraging a 21-year floral visitation dataset. Because A. i. idalia is protandrous, we determined whether foraging differences were due to divergent phenology by comparing visitation patterns between the entire season with restricted periods of male-female overlap. We quantified nectar carbohydrate and amino acid contents of the most visited plant species and compared those visited more frequently by males versus females. We demonstrate significant differences in visitation patterns between male and female A. i. idalia over two decades. Females visit a greater diversity of species, while dissimilarity in foraging patterns between sexes is persistent and comparable to differences between species. While differences are diminished or absent in some years during periods of male-female overlap, remaining signatures of foraging dissimilarity during implicate mechanisms other than phenology. Nectar of plants visited more by females had greater concentrations of total carbohydrates, glucose, and fructose and individual amino acids than male-associated plants. Further work can test whether nutritional differences are a cause of visitation patterns or consequence, reflecting seasonal shifts in the nutritional landscape encountered by male and female A. i. idalia. We highlight the importance of considering sex-specific foraging patterns when studying interaction networks, and in making conservation management decisions for this at-risk butterfly and other species exhibiting strong intraspecific variation.
Project description:Eastern populations of the North American regal fritillary, Argynnis idalia Drury (1773), have been largely extirpated over the past half century. Here we report on the last remaining population of eastern regal fritillaries, located within a military installation in south-central Pennsylvania. Samples were obtained from field specimens during two years of annual monitoring, and from females collected for captive rearing over a five year period. Nuclear microsatellite and mitochondrial sequence data do not suggest subdivision within this population, but excess nuclear homozygosity indicates negative impacts on genetic diversity likely due to small population size and potential inbreeding effects. Molecular assays did not detect Wolbachia endosymbionts in field specimens of regal fritillary, but sympatric Argynnis sister species showed high prevalence of Wolbachia infected individuals. Our results inform ongoing conservation and reintroduction projects, designed to protect the last remaining regal fritillary population from extirpation in the eastern United States.