Project description:We performed single-cell RNA sequencing on CD45+ cells isolated from the lungs of C57BL/6 mice exposed to diesel exhaust particles via inhalation. The objective was to investigate which immune cells respond to particulate matter exposure.
Project description:Human BEAS-2B bronchial epithelial cells were exposed directly at the air-liquid interphase towards exhaust gas and particles of a ship engine. The goal was to compare the responses towards different fuel combustions. The engine run either on diesel fuel (DF) or on Heavy Fuel Oil (HFO).
Project description:Human BEAS-2B bronchial epithelial cells were exposed directly at the air-liquid interphase towards exhaust gas and particles of a ship engine. The goal was to compare the responses towards different fuel combustions. The engine run either on diesel fuel (DF) or on Heavy Fuel Oil (HFO). The lung cells were exposed 3 times to each combustion aerosol (DF or HFO). The duration of the exposure was 4h. The cells were seeded into transwell-inserts 24h before exposure. Within each exposure 3 transwell-inserts were exposed to the complete aerosol and 3 transwell-inserts were exposed to the filtered aerosol. Effects of the complete aerosol were referenced against the filtered aerosol to determine the effects of the aerosol particles.
Project description:The potential of diesel exhaust particles (DEP) to transform human bronchial epithelial cells (HBEC3) was investigated and a stably transformed cell line (T2-HBEC3) was established. Short-term DEP exposure experiments adds information of immunomodulatory effect markers and differences in susceptibility between normal and sensitized bronhial epithelial cells of the human lung.
Project description:Air pollution is an environmental risk factor linked to multiple human diseases including cardiovascular diseases (CVDs). While particulate matter (PM) emitted by diesel exhaust damages multiple organ systems, heart disease is one of the most severe pathologies affected by PM. However, the in vivo effects of diesel exhaust particles (DEP) on the heart and the molecular mechanisms of DEP-induced heart dysfunction have not been investigated. In the current study, we attempted to identify the proteomic signatures of heart fibrosis caused by diesel exhaust particles (DEP) in CVDs-prone apolipoprotein E knockout (ApoE-/-) mice model using tandem mass tag (TMT)-based quantitative proteomic analysis. DEP exposure induced mild heart fibrosis in ApoE-/- mice compared with severe heart fibrosis in ApoE-/- mice that were treated with CVDs-inducing peptide, angiotensin II. TMT-based quantitative proteomic analysis of heart tissues between PBS- and DEP-treated ApoE-/- mice revealed significant upregulation of proteins associated with platelet activation and TGFβ-dependent pathways. Our data suggest that DEP exposure could induce heart fibrosis, potentially via platelet-related pathways and TGFβ induction, causing cardiac fibrosis and dysfunction.
Project description:Diesel exhaust particles (DEP), which contain hazardous compounds, are emitted during the combustion of diesel. As approximately one-third of the vehicles worldwide use diesel, there are growing concerns on the risks posed by DEP to human health. Long-term exposure to DEP is associated with airway hyperresponsiveness, pulmonary fibrosis, and inflammation; however, the molecular mechanisms behind the effects of DEP on the respiratory tract are poorly understood. Such mechanisms can be addressed by examining transcriptional and DNA methylation changes. In this study, we investigated the effect of 4 weeks exposure to 30 μg/ml DEP on DNA methylation levels in A549 cells.
Project description:Diesel exhaust particles (DEP), which contain hazardous compounds, are emitted during the combustion of diesel. As approximately one-third of the vehicles worldwide use diesel, there are growing concerns on the risks posed by DEP to human health. Long-term exposure to DEP is associated with airway hyperresponsiveness, pulmonary fibrosis, and inflammation; however, the molecular mechanisms behind the effects of DEP on the respiratory tract are poorly understood. Such mechanisms can be addressed by examining transcriptional and DNA methylation changes. In this study, we investigated the effect of 4 weeks exposure to 30 μg/ml DEP on gene expression levels in A549 cells.
Project description:There is an emerging concern that particulate air pollution increases the risk of cranial nerve disease onset. Small nanoparticles, mainly derived from diesel exhaust particles reach the olfactory bulb by their nasal depositions. It has been reported that diesel exhaust inhalation causes inflammation of the olfactory bulb and other brain regions. However, these toxicological studies have not evaluated animal rearing environment. We hypothesized that rearing environment can change mice phenotypes and thus might alter toxicological study results. In this study, we exposed mice to diesel exhaust inhalation at 90 micro g/m3, 8 hours/day, for 28 consecutive days after rearing in a standard cage or environmental enrichment conditions. Microarray analysis found that expression levels of 112 genes were changed by diesel exhaust inhalation. Functional analysis using Gene Ontology revealed that the dysregulated genes were involved in inflammation and immune response. This result was supported by pathway analysis. Quantitative RT-PCR analysis confirmed 10 genes. Interestingly, background gene expression of the olfactory bulb of mice reared in a standard cage environment was changed by diesel exhaust inhalation, whereas there was no significant effect of diesel exhaust exposure on gene expression levels of mice reared with environmental enrichment. The results indicate for the first time that the effect of diesel exhaust exposure on gene expression of the olfactory bulb was influenced by rearing environment. Rearing environment, such as environmental enrichment, may be an important contributive factor to causation in evaluating still undefined toxic environmental substances such as diesel exhaust. RNA sample was taken from olfactory bulb of 56-day-old mouse received diesel exhaust (DE) inhalation at 90 micro g/m3, 8 hours/day, for 28 consecutive days, while control RNA was taken from mouse received clean air, after rearing in a standard cage or environmental enrichment conditions. Comparisons among groups were made by one-color method with normalized data from Cy3 channels for data analysis.