Project description:In rodents, brown adipose tissue (BAT) contributes to whole body energy expenditure and low BAT activity is related to hepatic fat accumulation, partially attributable to the gut microbiome. Little is known of these relationships in humans. In adults (n=60), we assessed hepatic fat and cold-stimulated BAT activity utilizing magnetic resonance imaging and the gut microbiome with 16S sequencing. We transplanted gnotobiotic mice with feces from humans to assess the transferability of BAT activity and NAFLD through the microbiome. Individuals with NAFLD (n=29) had lower BAT activity than those without and BAT activity was inversely related to hepatic fat. Although the fecal microbiome was different in those with NAFLD, no differences were observed in relation to BAT activity and neither of these phenotypic traits were transmissible through fecal transplant to gnotobiotic mice. Thus, low BAT activity is associated with hepatic steatosis but this is not mediated through the gut microbiota.
Project description:An influenza A microarray was used to type influenza A H1N1 specimens collected in Washington State and the results compared with identification by both culture and real time RT PCR. The microarray was more sensitive than conventional influenza testing. Cluster analysis of the microarray data discriminated specimens into distinct clades. Specimens from two pediatric decedents formed a unique clade upon H1 analysis. Keywords: Comparative genome study; Influenza A strains; Subtype H1N1 23 influenza A H1N1 specimens collected in Washington State were subtyped by microarray and data was compared with identification by both culture and real time RT PCR.
Project description:We report that monocytes contribute to the maintenance of BAT macrophages in a dynamic manner at steady state, and allow tissue remodelling during BAT expansion. Using scRNA-Seq, we explored monocyte and macrophage diversity in BAT at steady state and during BAT expansion.
Project description:In this study, we conducted an integrated analysis of skin measurements, clinical BSTI surveys, and the skin microbiome of 950 Korean subjects to examine the ideal skin microbiome-biophysical association. By utilizing four skin biophysical parameters, we identified four distinct Korean Skin Cutotypes (KSCs) and categorized the subjects into three aging groups based on their age distribution. We established strong connections between 15 core genera and the four KSC types within the three aging groups, revealing three prominent clusters of the facial skin microbiome. Together with skin microbiome variations, skin tone/elasticity distinguishes aging groups while oiliness/hydration distinguishes individual differences within aging groups. Our study provides prospective reality data for customized skin care based on the microbiome environment of each skin type.
| EGAS00001007334 | EGA
Project description:Core microbiome of camelina in Eastern Washington State, USA