Project description:TP53-mutant acute myeloid leukemia (AML) and myelodysplastic neoplasms (MDS) are characterized by chemotherapy resistance and represent an unmet clinical need. Chimeric antigen receptor (CAR) T-cell therapy might be a promising therapeutic option for TP53-mutant AML/MDS. However, the impact of TP53 deficiency in AML cells on the efficacy of CAR T-cells is unknown. We here show that CAR T-cells engaging TP53-deficient leukemia cells exhibit a prolonged interaction time, upregulate exhaustion markers, and are unable to control AML cell outgrowth in vitro and in vivo compared to TP53 wildtype cells. Transcriptional profiling revealed that the mevalonate pathway is upregulated in TP53-deficient AML cells under CAR T-cell attack, while CAR T-cells engaging TP53-deficient AML cells downregulate the Wnt pathway. In vitro rational targeting of either of these pathways rescues AML cell sensitivity to CAR T-cell-mediated killing. We thus demonstrate that TP53 deficiency confers resistance to CAR T-cell therapy and identify the mevalonate pathway as a therapeutic vulnerability of TP53-deficient AML cells engaged by CAR T-cells, and the Wnt pathway as a promising CAR T-cell therapy-enhancing approach for TP53-deficient AML/MDS.
Project description:Mutations and deletions in TP53 are associated with adverse outcome in patients with myeloid malignancies and developing improved therapies for TP53-mutant leukemias is of urgent need. Here we identify mutations in TET2 as the most commonly co-existing mutation in TP53 mutant acute myeloid leukemia (AML) patients. Combined hematopoietic-specific deletion of TET2 and TP53 in mice enhanced self-renewal compared to deletion of either gene alone. Tet2/Tp53 double knockout mice developed serially transplantable AML. Both mice as well as patients with AML and combined TET2/TP53 alterations upregulated innate immune signaling in malignant cells. Mice with TET2/TP53 loss had expansion of monocytic myeloid-derived suppressor cells which impaired T cell proliferation. Moreover, patients and mice with TP53/TET2 double mutant AML upregulated TIGIT ligands CD155 on malignant cells. TIGIT blocking antibodies augmented the ability of NK cells to kill Tet2/Tp53 double mutant AML cells, reduced leukemic burden, and extended the survival of TET2/TP53 double knockout mice. These data thereby identify a previously unexplored link between TET2 and TP53 mutations and highlight therapeutic means to overcome the immunosuppressive bone marrow environment in this adverse subtype of AML.
Project description:Mutations and deletions in TP53 are associated with adverse outcome in patients with myeloid malignancies and developing improved therapies for TP53-mutant leukemias is of urgent need. Here we identify mutations in TET2 as the most commonly co-existing mutation in TP53 mutant acute myeloid leukemia (AML) patients. Combined hematopoietic-specific deletion of TET2 and TP53 in mice enhanced self-renewal compared to deletion of either gene alone. Tet2/Tp53 double knockout mice developed serially transplantable AML. Both mice as well as patients with AML and combined TET2/TP53 alterations upregulated innate immune signaling in malignant cells. Mice with TET2/TP53 loss had expansion of monocytic myeloid-derived suppressor cells which impaired T cell proliferation. Moreover, patients and mice with TP53/TET2 double mutant AML upregulated TIGIT ligands CD155 and CD112 on malignant cells. TIGIT blocking antibodies augmented the ability of NK cells to kill Tet2/Tp53 double mutant AML cells, reduced leukemic burden, and extended the survival of TET2/TP53 double knockout mice. These data thereby identify a previously unexplored link between TET2 and TP53 mutations and highlight therapeutic means to overcome the immunosuppressive bone marrow environment in this adverse subtype of AML.
Project description:The key myeloid transcription factor (TF) CEBPA is frequently mutated in acute myeloid leukemia (AML), but the molecular ramifications of this leukemic driver mutation remain elusive. To investigate CEBPA mutant AML, we compared gene expression changes in human CEBPA mutant AML and in the corresponding CebpaLp30 mouse model, and identified a conserved cross-species transcriptional program. ChIP-seq revealed aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. One leukemic-enhancer upstream of Nt5e, encoding CD73, was physically and functionally linked to this conserved AML gene, and could be activated by CEBPA. Targeting of CD73-adenosine signaling increased AML survival in transplanted mice. Our data indicate a first-in-class link between a TF cancer driver mutation and a druggable, direct transcriptional target.
Project description:Acute Myeloid Leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 and KIT. FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK, is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 myeloid progenitor cell lines transduced with an empty vector or oncogenic mutant KIT (V560G, D816V). Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK at threonine 2599 in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared to empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling via using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Discovery phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib single-agent treatment inhibited ERK1 activity, and M3814 single-agent treatment inhibited Akt/mTOR activity. The combination of dasatinib and M3814 treatment inhibited both ERK/MAPK and Akt/mTOR activity, and induced synergistic inhibition of phosphorylation of transcription regulators including MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair, and demonstrates that DNA-PK is a promising novel therapeutic target for KIT mutant cancers.
Project description:Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are driver mutations in acute myeloid leukemia (AML) and other cancers. We report the development of new allosteric inhibitors of mutant IDH1. Crystallographic and biochemical results demonstrated that compounds of this chemical series bind to an allosteric site and lock the enzyme in a catalytically inactive conformation, thereby enabling inhibition of different clinically relevant IDH1 mutants. Treatment of IDH1 mutant primary AML cells uniformly led to a decrease in intracellular 2-HG, abrogation of the myeloid differentiation block and induction of granulocytic differentiation at the level of leukemic blasts and more immature stem-like cells, in vitro and in vivo. Molecularly, treatment with the inhibitors led to a reversal of the DNA cytosine hypermethylation patterns caused by mutant IDH1 in AML patients’ cells. Our study provides proof-of-concept for the molecular and biological activity of novel allosteric inhibitors for targeting different mutant forms of IDH1 in leukemia. To obtain insight into the molecular mechanism of the novel IDH1 mutant allosteric inhibitor, primary AML cells were treated with either GSK321 IDH1 active inhibitor or Controls (DMSO or GSK990 inactive inhibitor) followed by DNA extraction for ERRBS analysis. Primary IDH1 mutant acute myeloid leukemia (AML) mononuclear (MNC) cells were treated in suspension cultures in differentiating media for 6 days with 3 microM GSK990 or GSK321 and an equal volume of DMSO, Followed ERRBS analysis after DNA extraction.
Project description:Acute myeloid leukemia (AML) pathogenesis often involves a mutation in the NPM1 nucleolar chaperone, but the bases for its transforming properties and association with favorable outcome remain incompletely understood. Here we demonstrate that an oncogenic mutant form of NPM1 (NPM1c) hampers formation of PML nuclear bodies (NBs), key senescence effectors, and impairs mitochondrial function to drive an integrated stress response. Actinomycin D (ActD), an antibiotic with unambiguous clinical efficacy in relapsed/refractory NPM1c-AMLs, preferentially targets these primed mitochondria, activating cGAS signaling and boosting ROS production. The later restores PML NB formation to drive senescence of NPM1c-AMLs cells. Dual targeting of mitochondria by Venetoclax and ActD synergized for AML elimination. Our studies reveal a central role of mitochondria downstream of NPM1c and implicate a mitochondrial/ROS/PML/TP53 senescence pathway as a key effector of ActD-based, and possibly others, chemotherapies.
Project description:Antibody-based therapy for cancer is now one of the most successful and important strategies for treating patients with hematological malignancies. However, the lack of efficient tumor-associated antigens restricts the targeting therapy of myeloid leukemia. Analysis of the gene expression proï¬les of primary bone marrow samples from human acute myeloid leukemia (AML) patients or healthy donors was to identify and expand novel targets for the treatment of myeloid leukemias. we found that epithelial cell adhesion molecule (EpCAM) is overexpressed in patients with AML. we analyzed the gene expression proï¬les of bone marrow mononuclear cells from 2 human acute myeloid leukemia (AML) patients and 2 healthy donors using an oligonucleotide microarray, to identify up-regulated genes in AML samples comparing with healthy tissues.
Project description:Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are driver mutations in acute myeloid leukemia (AML) and other cancers. We report the development of new allosteric inhibitors of mutant IDH1. Crystallographic and biochemical results demonstrated that compounds of this chemical series bind to an allosteric site and lock the enzyme in a catalytically inactive conformation, thereby enabling inhibition of different clinically relevant IDH1 mutants. Treatment of IDH1 mutant primary AML cells uniformly led to a decrease in intracellular 2-HG, abrogation of the myeloid differentiation block and induction of granulocytic differentiation at the level of leukemic blasts and more immature stem-like cells, in vitro and in vivo. Molecularly, treatment with the inhibitors led to a reversal of the DNA cytosine hypermethylation patterns caused by mutant IDH1 in AML patients’ cells. Our study provides proof-of-concept for the molecular and biological activity of novel allosteric inhibitors for targeting different mutant forms of IDH1 in leukemia. To obtain insight into the molecular mechanism for the induction of granulocytic differentiation and cell death following inhibition of IDH1 mutant protein in primary AML cells, we performed gene expression microarrays following treatment with either GSK321 IDH1 inhibitor or Controls (DMSO or GSK990 inactive inhibitor). Primary IDH1 mutant acute myeloid leukemia (AML) mononuclear (MNC) cells were treated in suspension cultures in differentiating media for 6 days with 3 microM GSK990 or GSK321 and an equal volume of DMSO. Followed by microarray analysis after RNA extraction.
Project description:The bromodomain and extraterminal (BET) protein BRD4 is a therapeutic target in acute myeloid leukemia (AML). Here, we demonstrate that the AML maintenance function of BRD4 requires its interaction with NSD3, which belongs to a subfamily of H3K36 methyltransferases. Unexpectedly, AML cells were found to only require a short isoform of NSD3 that lacks the methyltransferase domain. We show that NSD3-short is an adaptor protein that sustains leukemia by linking BRD4 to the CHD8 chromatin remodeler, by using a PWWP chromatin reader module, and by employing an acidic transactivation domain. Genetic targeting of NSD3 or CHD8 mimics the phenotypic and transcriptional effects of BRD4 inhibition. Furthermore, BRD4, NSD3, and CHD8 colocalize across the AML genome, and each is released from super-enhancer regions upon chemical inhibition of BET bromodomains. These findings suggest that BET inhibitors exert therapeutic effects in leukemia by evicting BRD4-NSD3-CHD8 complexes from chromatin to suppress transcription. ChIP-Seq for regulatory factors of BRD4, NSD3, CHD8 and histone modification H3K36me2 in MLL-AF9 transformed acute myeloid leukemia cells (RN2)