Project description:The goal of this study is to find novel regulatory details of plant biomass-degrading enzymes in filamentous fungus Trichoderma guizhouense NJAU4742. Strain NJAU4742 and its mutants (∆Tgxyr1,∆Tgace1 and ∆Tgace2) were firstly incubated using 2% glucose, and then transfered into the medium containing different polysaccharides (xylan or cellulose) or carbon starvation. After 0h, 4h, 24h or 72h, samples were extracted and used for transcriptome sequencing in Illumina platform.
Project description:<p>Wheat is a major staple crop grown across the globe. Fusarium crown rot (FCR) of wheat, caused by Fusarium pseudograminearum, is a destructive soil-borne disease that lacks effective sustainable control measures. Here, we assembled a cross-kingdom synthetic microbial community (SMC) comprising Trichoderma harzianum T19, Bacillus subtilis BS-Z15, and four other Bacillus strains, and evaluated its biocontrol efficacy against FCR under non-sterile soil conditions. The SMC treatment significantly suppressed FCR, reducing the disease severity index by approximately 70%. Wheat growth and yield were simultaneously enhanced: SMC inoculation nearly doubled plant biomass (with fresh and dry weights ~100% higher) and increased thousand-kernel weight by ~14% compared to the controls. In the rhizosphere, SMC improved soil health by elevating soil organic matter and nitrogen levels by over 50%, while mitigating pathogen-induced nutrient imbalances (excess available P and K) and boosting nutrient-cycling enzyme activities. Amplicon sequencing revealed that SMC suppressed pathogenic Fusarium in the rhizosphere and enriched beneficial microbes, including antagonistic fungi (Trichoderma, Chaetomium) and plant growth-promoting bacteria (Pseudomonas, Paenibacillus). Co-occurrence network analysis showed that SMC treatment restructured the rhizosphere microbial network with higher connectivity, stability, and a prevalence of positive cooperative interactions under F. pseudograminearum stress. Defense-related metabolites, such as epi-jasmonic acid, allantoin, Nβ-acetyltryptamine, and dihydrodaidzein, accumulated to higher levels with SMC, consistent with KEGG enrichment in pathways related to amino acid biosynthesis, carbon metabolism, signal transduction, and plant defense. These findings demonstrate that the cross-kingdom SMC modulates soil nutrients, microbial community structure, and rhizosphere metabolites to synergistically promote wheat growth and enhance resistance to FCR.</p>
Project description:In the present study we have assessed, by transcriptional profiling, the systemic defense response of Zea mays plants to the ear rotting pathogen Fusarium verticilioides induced by the beneficial fungus Trichoderma atroviride
Project description:Plant-beneficial fungi from the genus Trichoderma (Hypocreales, Ascomycota) can control oomyceteous plant-pathogenic Pythium myriotylum (Peronosporales, Oomycota) and thus serve as bioeffectors for the eco-friendly products of crop protection. However, the underlying mechanisms of microbe-microbe interactions have yet to be fully understood. In this study, we focused on the role of the Trichoderma secretome induced by P. myriotylum mycelia. For this purpose, we selected strains showing strong (T. asperellum, T. atroviride, T. virens), moderate (T. cf. guizhouense, T. reesei), and weak (T. parepimyces) activities, respectively, and cultured with the sterilized P. myriotylum mycelia. Secreted proteins were analyzed using label-free LC-MS/MS, bioinformatic localization prediction, gene ontology (GO) annotation, and ortholog analysis. The exoproteomic analysis quantified proteins in the six Trichoderma spp., suggesting unequal antagonistic mechanisms among the strong and weak strains, respectively, with different proportions of putative cellulases, proteases, redox enzymes, and extracellular proteins of unknown function. Notably, proteolysis-related proteins were abundant, while the abundant proteases tended not to be conserved across the species (i.e., non-orthologous). Putative cellobiohydrolases were detected abundantly in all Trichoderma species except for the weak antagonist T. parepimyces, even though its genome encodes for these proteins. Notably, secretomes of the most potent anti-Pythium bioeffectors tended to have higher endo-cellulase activity. Cellulose and other glucans are major components of the oomycete cell wall, which was partly reflected in the cellulases produced by the Trichoderma species. The varying abundances of orthologous proteins suggested the evolution of differing transcription regulation mechanisms across the Trichoderma genus in response to the ubiquitous presence of Oomycota.
Project description:Transcriptomic data collected from cultures of Fusarium verticillioides six hours post-exposure to Bacillus mojavensis RRC101 lipopeptides (surfactins, fengycins, combined treatment)
2020-09-30 | GSE120054 | GEO
Project description:Transcriptome data of Trichoderma guizhouense after constant blue light exposure