Project description:Cryptococcal osteomyelitis is an infrequent infection which is usually associated with disseminated cryptococcosis or underlying immunocompromised conditions. Here we described a rare case with isolated iliac cryptococcosis in an immunocompetent patient. Through histological, microbial, and molecular biological examinations, the pathogen was finally identified as C. neoformans VNI genotype, which likely originated from environmental bird droppings. The clinical isolate was hypomelanized but fully virulent in mouse infection model. The patient displayed lower CD4+-T lymphocyte ratio, reduced serum IFN-γ and IL-12, and dysregulated transcriptional profile of blood leukocytes compare with healthy host. After surgical excision and 34 weeks’ antifungal treatment, the patient got clinical cured. Our study suggested that cryptococcosis development was closely associated with the interaction of fungal agent and host immunity. Accurate diagnosis of bone cryptococcosis depends mainly on histological and fungal examinations. A combination of antifungal agent treatment regimen and surgery were quite effective for resolving bone cryptococcosis.
Project description:We report the microRNA expression in patients with multiple myeloma and healthy adults. RNA sequencing was performed for circulating exosomes obtained from the serum of 10 MM patients and 5 healthy individuals.
Project description:Rationale: Airspace macrophages are the most abundant cell in airspaces and are viewed as a homogeneous population during health. Single cell RNA sequencing allows for examination of transcriptional heterogeneity between cells and between individuals. Understanding the conserved repertoire of airspace leukocytes during health is essential to understanding cellular programing during disease. Objective: We sought to determine the transcriptional heterogeneity of human bronchoalveolar lavage cells in healthy adults. Methods: Ten healthy subjects underwent bronchoscopy. Cells obtained from lavage fluid were subjected to single cell RNA sequencing. Unique cell populations and putative functions were identified. Transcriptional profiles were compared across individuals. Measurements and Main Results: Based on transcriptional profiling we identify highly conserved macrophage, monocyte-like, lymphocyte, dendritic cell, and cycling cell populations. We define two unique subgroups of resident airspace macrophages - one defined by a pro-inflammatory profile and one by metallothionein gene expression. We identify distinct subsets of monocyte-like cells and directly compared them to peripheral blood mononuclear cells. Finally, we compare global macrophage and monocyte programing between male and female subjects. Conclusions: Healthy human airspaces contain multiple populations of leukocytes that are highly conserved between individuals and between the sexes. Resident macrophages comprise the largest population and include novel subsets defined by inflammatory and metal-binding gene signatures. Monocyte-like cells within the airspaces are transcriptionally distinct from circulating blood cells and include a rare population defined by expression of cell-matrix interaction genes. This study is the first to define airspace immune cell heterogeneity and identifies three previously unrecognized myeloid cell subsets.
Project description:Healthy adults with serum insulin like growth factor -1 (IGF-I) levels at the lowest quartile of normal ranges have increased fat metabolism and reduced glucose utlisation compared with those in the highest quartile during fasting We used gene expression in skeletal muscle to explore metabolism during fasting
Project description:Genome wide DNA methylation profiling of isolated monocyte samples from healthy Kenyan children, the same children during an episode of acute malaria, healthy Kenyan adults, and healthy adults from the United States. The Illumina Infinium MethylationEPIC BeadChip microarray was used to obtain DNA methylation profiles across approximately 860,000 CpGs in negatively selected monocyte samples. Samples included monocytes from 8 children from western Kenya obtained while healthy and matching samples from the same 8 Kenyan children obtained during an episode of acute uncomplicated Plasmodium falciparum malaria, 8 healthy malaria-immune adults from western Kenya, and 8 healthy malaria-naive adults from the US. Abstract -- Background: Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profiles in monocytes from young adults and children from western Kenya. Results: We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles. Conclusions: These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.