Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
Project description:Phosphate (P) fertilization impacts many rhizosphere processes, driving plant P use efficiency. However, less is known about the induced molecular and physiological root-rhizosphere traits in responses to polyphosphates (PolyP), particularly root transcriptome and belowground functional traits responsible for P acquisition. The present study aims to investigate physiological and transcriptomic belowground mechanisms explaining the enhanced durum wheat P acquisition under PolyP (PolyB and PolyC) supply. Root molecular traits were differentially expressed in response to PolyP, where PolyB induced upregulation of OGDH, MDH, and ENO, PAP21 and downregulation of PFK, and LDH genes. The modulation of gene expression can presumably explain the PolyP-induced changes in rhizosphere (root, rhizosphere soil, soil solution) acidification (pH decreased from 8 to 6.3) and acid phosphatase activities, which were concomitant with enhanced rhizosphere soil P availability and shoot Pi content (145% and 36% compared to OrthoP, respectively) along with changes in morphological and transcriptomic root (particularly, the upregulation of AUX1 and ABA transporter genes) traits. These findings provide novel insights that P acquisition from polyphosphates involves the coordinated regulation of genes governing root-rhizosphere processes and root development, ultimately enhancing wheat P acquisition.