Project description:Cuscuta campestris is an obligate parasitic plant that requires a host to complete its lifecycle. Parasite-host connections occur via an haustorium, a unique organ that acts as a bridge for the uptake of water, nutrients and macromolecules. Research on Cuscuta is often complicated by host influences, but comparable systems for growing the parasite in the absence of a host do not exist. We developed an axenic method to grow C. campestris on an Artificial Host System (AHS). We evaluated the effects of nutrients and phytohormones on parasite haustoria development and growth. Haustorium morphology and gene expression were characterized. The AHS consists of an inert, fibrous stick that mimics a host stem, wicking water and nutrients to the parasite. It enables C. campestris to exhibit a parasitic habit and develop through all stages of its lifecycle, including production of new shoots and viable seeds. Phytohormones NAA and BA affect haustoria morphology, and increase parasite fresh weight and biomass. Gene expression in AHS haustoria reflect process similar to those in haustoria on actual host plants. The AHS is a methodological improvement for studying Cuscuta biology by avoiding specific host effects on parasite and giving researchers full control of the parasite environment.
2022-06-07 | GSE178396 | GEO
Project description:An expanded transcriptome for early haustorium development in Cuscuta campestris
Project description:The parasitic lifestyle of parasitic plants relies on the development of a haustorium, a specific infectious organ required for attachment to host roots. While haustorium development is initiated upon chemodetection of host-derived molecules in hemiparasitic plants, the induction of haustorium formation remains largely misunderstood in holoparasitic species such as Phelipanche ramosa. This work demonstrates that the root exudates of the host plant Brassica napus contain allelochemicals displaying a haustorium-inducing activity on P. ramosa germinating seeds which increases the parasite aggressiveness. A de novo assembled P. ramosa transcriptome and a microarray approach during early haustorium formation upon treatment with B. napus root exudates allowed the identification of differentially expressed genes involved in hormone signaling. Bioassays using exogenous cytokinins and the specific cytokinin receptor inhibitor PI55 showed that cytokinins induced haustorium formation and increased parasite aggressiveness. Root exudates triggered the expression of cytokinin responsive genes during early haustorium development in germinated seeds and bio-guided UPLC-MS analysis showed that these exudates contain a cytokinin with dihydrozeatin characteristics. These results suggest that cytokinins constitutively exudated from host roots play a major role in haustorium formation and aggressiveness in P. ramosa.
Project description:By analyzing the transcriptome and metabolome data of walnut infected by phompsis capsici to study the changes of differentially expressed genes and secondary metabolites,Exploring the molecular mechanism of walnut phompsis capsici.
2024-08-01 | GSE210699 | GEO
Project description:Integrative metabolome and transcriptome analysis reveal the molecular mechanism of yellow-red bicolor formation in Kalanchoe blossfeldiana petals
Project description:Under nitrogen deficiency situation, Nannochloropsis spp. accumulate large amounts of lipid in the form of triacylglycerides (TAG). Several researches have studied the mechanism of this process from the perspective of transcriptome and metabolome, yet proteome analysis on this process is still sparse and lacking the analysis of the dynamic adaption to nitrogen deficiency. Here, proteomes for 03h, 06h, 12h, 24h, 48h and 10th day of nitrogen deplete and replete conditions were compared. New proteome results were integrated with existing transcriptome and other data.
Project description:To explore molecular mechanisms affecting nutritional risk and neurodevelopment in children with congenital heart disease (CHD) by combining transcriptome and metabolome analysis. In this study, transcriptomic and metabolomic analysis of blood and serum samples from 26 children with CHD was performed to search for key DEGs and DEMs, and explore molecular mechanisms affecting nutritional risk and neurodevelopment in children with CHD.