Project description:An H5N1 virus-encoded microRNA directly targets mammalian poly(rC) binding protein 2 and is a major contributor to H5N1-associated ‘cytokine storm’ and mortality.
Project description:Human tracheobronchial epithelial (HTBE) cells are considered to serve as a good correlate of influenza virus infection in the human respiratory tract. ChIP-Seq analysis was used to profile histone acetylation (H3K27ac) in HTBE cells at multiple time points in response to infection with influenza A/California/04/09 (H1N1), A/Wyoming/03/03 (H3N2), and A/Vietnam/1203/04 (H5N1) HALo virus. The Influenza A/Vietnam/1203/04 (H5N1) HALo mutant virus is an attenuated H5N1 virus generated from wild-type Influenza A/Vietnam/1203/04 (H5N1) virus as described in Steel, J., et al. J Virol. 2009 Feb; 83(4):1742-53.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:To find the different host response during H5N1 and H1N1 infection, we have employed whole genome microarray expression profiling as a discovery platform to identify genes differentially expressed in mouse lungs infected by H5N1 and H1N1 virus. BALB/c mice were infected with live H5N1 virus , live H1N1 virus, or inactivated H5N1 virus or allantoic fluid (AF) for 24 h.
Project description:The H5N1 avian influenza virus clade 2.3.4.4b outbreak represents a major pandemic threat for humans, with some reported cases of severe and fatal respiratory illness. A key unanswered question is the pathogenesis of severe H5N1 disease following respiratory infection. In this study, we explored mechanisms of pathogenesis of severe H5N1 disease in cynomolgus and rhesus macaques following infection with the H5N1 isolate A/Texas/37/2024 (huTX37-H5N1). Cynomolgus macaques developed severe pneumonia that was lethal in 100% of macaques by 7 days post-infection. By contrast, rhesus macaques demonstrated dose-dependent mortality, and surviving animals showed protective immunity against high-dose re-challenge. A multi-omics analysis demonstrated that H5N1 infection was characterized by robust induction of proinflammatory cytokines, innate immune cells, complement, coagulation, apoptosis, and immune exhaustion pathways. Taken together, our data indicate inflammation and immune dysregulation as key mechanisms of H5N1 pathogenesis in nonhuman primates.
Project description:The pathogenesis of avian influenza A H5N1 virus in human has not been clearly elucidated. There have been increasing evidence suggesting a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. However, the role of aberrant innate immune response in human lungs infected by avian influenza H5N1 virus has not been explored and direct evidence for inappropriate innate responses in lungs of avian influenza H5N1 virus infected patients is lacking.
Project description:Hi-C was used to profile changes in the genome structure of human primary cells at multiple time points in response to infection with active and UV-inactivated H5N1 influenza virus. Human tracheobronchial epithelial cells (HTBE) and monocyte-derived macrophages (MDM) were used. The Influenza A/Vietnam/1203/04 (H5N1) HALo mutant virus is an attenuated H5N1 virus generated from wild-type Influenza A/Vietnam/1203/04 (H5N1) virus as described in Steel, J., et al. J Virol. 2009 Feb; 83(4):1742-53.
Project description:Human monocyte-derived macrophages (MDM) serve as a model for resident alveolar macrophages (AM) in the human respiratory tract. mRNA-Seq analysis was used to profile the cellular transcriptome of MDM cells at multiple time points in response to infection with influenza A/California/04/09 (H1N1), A/Wyoming/03/03 (H3N2), and A/Vietnam/1203/04 (H5N1) HALo virus. The Influenza A/Vietnam/1203/04 (H5N1) HALo mutant virus is an attenuated H5N1 virus generated from wild-type Influenza A/Vietnam/1203/04 (H5N1) virus as described in Steel, J., et al. J Virol. 2009 Feb; 83(4):1742-53.