Project description:To understand the ecophysiology of Sulfurihydrogenibium spp. in situ, integrated metagenomic, metatranscriptomic and metaproteomic analyses were conducted on a microbial community from Narrow Gauge at Mammoth Hot Springs, Yellowstone National Park.
Project description:To effectively monitor microbial populations in acidic environments and bioleaching systems, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the known genes associated with the acidophiles. This array contained 1,072 probes in which there were 571 related to 16S rRNA and 501 related to functional genes. Acid mine drainage (AMD) presents numerous problems to the aquatic life and surrounding ecosystems. However, little is known about the geographic distribution, diversity, composition, structure and function of AMD microbial communities. In this study, we analyzed the geographic distribution of AMD microbial communities from twenty sites using restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes, and the results showed that AMD microbial communities were geographically distributed and had high variations among different sites. Then an AMD-specific microarray was used to further analyze nine AMD microbial communities, and showed that those nine AMD microbial communities had high variations measured by the number of detected genes, overlapping genes between samples, unique genes, and diversity indices. Statistical analyses indicated that the concentrations of Fe, S, Ca, Mg, Zn, Cu and pH had strong impacts on both phylogenetic and functional diversity, composition, and structure of AMD microbial communities. This study provides insights into our understanding of the geographic distribution, diversity, composition, structure and functional potential of AMD microbial communities and key environmental factors shaping them. This study investigated the geographic distribution of Acid Mine Drainages microbial communities using a 16S rRNA gene-based RFLP method and the diversity, composition and structure of AMD microbial communities phylogenetically and functionally using an AMD-specific microarray which contained 1,072 probes ( 571 related to 16S rRNA and 501 related to functional genes). The functional genes in the microarray were involved in carbon metabolism (158), nitrogen metabolism (72), sulfur metabolism (39), iron metabolism (68), DNA replication and repair (97), metal-resistance (27), membrane-relate gene (16), transposon (13) and IST sequence (11).
Project description:The thermophilic Aquificales inhabit and play important biogeochemical roles in the geothermal environments globally. Although intensive studies on physiology, microbial ecology, biochemistry, metagenomics and metatranscriptomics of the Aquificales¬ species and Aquificales-containing environmental samples have been conducted, comprehensive understandings about their ecophysiology, especially in the natural niches have been limited. In the present study, an integrated suite of metagenomic, metatranscriptomic and metaproteomic analyses, for the first time, were conducted on a filamentous microbial community from the Apron and Channel Facies (ACF) of CaCO3 (travertine) deposition at Narrow Gauge, Mammoth Hot Springs, Yellowstone National Park.
Project description:The thermophilic Aquificales inhabit and play important biogeochemical roles in the geothermal environments globally. Although intensive studies on physiology, microbial ecology, biochemistry, metagenomics and metatranscriptomics of the Aquificales¬ species and Aquificales-containing environmental samples have been conducted, comprehensive understandings about their ecophysiology, especially in the natural niches have been limited. In the present study, an integrated suite of metagenomic, metatranscriptomic and metaproteomic analyses, for the first time, were conducted on a filamentous microbial community from the Apron and Channel Facies (ACF) of CaCO3 (travertine) deposition at Narrow Gauge, Mammoth Hot Springs, Yellowstone National Park.
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments.
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments. Four samples were analysed in total. One corresponded to a pooled sample of RNA extracted from root tissues of 60 plants. The other three were biological replicates from shoot tissues, each of which contained 20 plants. Controls were used as reference and corresponded to tissues of plants grown in sterile conditions.
Project description:Marine snow plays a central role in carbon cycling. It consists of organic particles and particle-associated (PA) microbMarine snow plays a central role in carbon cycling. It consists of organic particles and particle-associated (PA) microbial communities that are embedded in a sugary matrix. Metaproteomic analysis offers the unique opportunity to gain unprecedented insight into the microbial community composition and biomolecular activity of environmental samples. In order to realize this potential for marine PA microbial communities, new methods of protein extraction must be developed. In this study, we used 1D-SDS-PAGEs and LC-MS/MS to compare the efficiency of six established protein extraction protocols for their applicability of metaproteomic analyses of the PA microbial community in the North Sea. A combination of SDS-buffer extraction and bead beating resulted in the greatest number of identified protein groups. As expected, a metagenomic database of the same environmental sample increased the number of protein identification by approximately 50%. To demonstrate the application of our established protocol, particulate bacterioplankton samples collected during spring phytoplankton bloom in 2009 near the island Helgoland, were analysed by a GeLC-MS/MS-based metaproteomic approach. Our results indicated that there are only slight differences in the taxonomical distribution between free-living (FL) and PA bacteria but that the abundance of protein groups involved in polysaccharide degradation, motility and particle specific stress (oxygen limitation, nutrient limitation, heavy metal stress) is higher in the PA fractions. ial communities that are embedded in a sugary matrix. Metaproteomic analysis offers the unique opportunity to gain unprecedented insight into the microbial community composition and biomolecular activity of environmental samples. In order to realize this potential for marine PA microbial communities, new methods of protein extraction must be developed. In this study, we used 1D-SDS-PAGEs and LC-MS/MS to compare the efficiency of six established protein extraction protocols for the their applicability of metaproteomic analyses of the PA microbial community in the North Sea. A combination of SDS-buffer extraction and bead beating resulted in the greatest number of identified protein groups. As expected, a metagenomic database of the same environmental sample increased the number of protein identification by approximately 50%. To demonstrate the application of our established protocol, particulate bacterioplankton samples collected during spring phytoplankton bloom in 2009 near the island Helgoland, were analysed by a GeLC-MS/MS-based metaproteomic approach. Our results indicated that there are only slight differences in the taxonomical distribution between free-living (FL) and PA bacteria but that the abundance of protein groups involved in polysaccharide degradation, motility and particle specific stress (oxygen limitation, nutrient limitation, heavy metal stress) is higher in the PA fractions.
Project description:Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between identity and function in microbial ecosystems by (i) determining the values of δ13C for different taxonomic divisions, and (ii) using those values as clues to the metabolic pathways employed by the respective organisms. This project measures >200 protein fractions and δ13C values for a sample of Cyanobacteria + Chloroflexi dominated microbial mat from Yellowstone National Park, USA.