Project description:In this dataset, we identify microRNAs and other ncRNAs in neuronal (SHSY5Y) cells following a 12h or 24h infection with Respiratory Syncytial Virus (RSV) or Measles virus (MeV) relative to mock treated neuronal cells
Project description:Viral respiratory infections significantly affect young children, particularly extremely premature infants, resulting in high hospitalization rates and increased health-care burdens. Despite posing substantial health risks, airway immune responses in early life remain largely unexplored. Nasal epithelial cells, the primary defense against respiratory infections, are vital for understanding nasal immune responses and serve as a promising target for uncovering underlying molecular and cellular mechanisms. Using a trans-well pseudostratified nasal epithelial cell system, we examined age-dependent developmental differences and antiviral responses to influenza A and respiratory syncytial virus through systems biology approaches. Our studies revealed differences in innate-receptor repertoires, distinct developmental pathways, and differentially connected antiviral network circuits between neonatal and adult nasal epithelial cells. Consensus network analysis identified unique and shared cellular networks for influenza A and respiratory syncytial virus, emphasizing highly relevant virus-specific pathways. This research highlights the importance of nasal epithelial cells in innate antiviral immune responses and offers novel insights that should enable a deeper understanding of age-related differences in nasal epithelial cell immunity following respiratory virus infections.
Project description:Diagnosis of acute respiratory viral infection is currently based on clinical symptoms and pathogen detection. Use of host peripheral blood gene expression data to classify individuals with viral respiratory infection represents a novel means of infection diagnosis. We used microarrays to capture peripheral blood gene expression at baseline and time of peak symptoms in healthy volunteers infected intranasally with influenza A H3N2, respiratory syncytial virus or rhinovirus. We determined groups of coexpressed genes that accurately classified symptomatic versus asymptomatic individuals. We experimentally inoculated healthy volunteers with intranasal influenza, respiratory syncytial virus or rhinovirus. Symptoms were documented and peripheral blood samples drawn into PAXgene tubes for RNA isolation.
Project description:We report the analysis of nasal curettage cells by RNAseq collected at pre-symptomatic timepoints in healthy adults experimentally challenged with respiratory syncytial virus (RSV). Following inoculation, 57% of participants developed PCR-confirmed infection. Prior to viral challenge, 80 differentially expressed genes were identified that associated with susceptibility to symptomatic infection. At day 3, 87 differentially expressed genes were associated with protection. Thus, we showed that the nasal mucosa at the time of virus exposure and during the incubation phase correlate with susceptibiltiy and protection from respiratory viral infection.
Project description:Bovine respiratory epithelial cells have different susceptibility to bovine
respiratory syncytial virus infection. The cells derived from the lower
respiratory tract were significantly more susceptible to the virus than those
derived from the upper respiratory tract. Pre-infection with virus of lower
respiratory tract with increased adherence of P. multocida; this was not the
case for upper tract. However, the molecular mechanisms of enhanced
bacterial adherence are not completely understood. To investigate whether
virus infection regulates the cellular adherence receptor on bovine trachea-,
bronchus- and lung-epithelial cells, we performed proteomic analyses.
2020-07-28 | PXD019509 | JPOST Repository
Project description:Respiratory syncytial virus two-step infection screen reveals inhibitors of early and late life cycle stages
Project description:In this study we investigated whether there exists a genomic signature that can accurately predict the course of a respiratory syncytial virus (RSV) infection in hospitalized young infants. We used early blood microarray transcriptome profiles from 39 infants that were followed until recovery and of which the level of disease severity was determined retrospectively. Applying support vector machine learning on age by sex standardized transcriptomic data, an 84 gene signature was identified that discriminated hospitalized infants with eventually less severe RSV infection from infants that suffered from most severe RSV disease.
Project description:Infants suffer disproportionately from respiratory infections and generate reduced vaccine responses compared to adults, although underlying mechanisms remain unclear. In adult mice, lung-localized, tissue-resident memory T cells (TRM) mediate optimal protection to respiratory pathogens. We hypothesized that reduced protection in infancy was due to impaired T effector localization and/or lung TRM establishment. Using an infant mouse model we demonstrate generation of lung-homing, virus-specific T effectors following influenza infection or live-attenuated vaccination, similar to adults. However, infection during infancy generated markedly fewer lung TRM and heterosubtypic protection was reduced compared to adults. Impaired TRM establishment was infant-T cell-intrinsic and infant effectors displayed distinct transcriptional profiles enriched for T-bet-regulated genes. Notably, mouse and human infant T cells exhibited increased T-bet expression following activation and reducing T-bet levels in infant mice enhanced lung TRM establishment. Our findings reveal that infant T cells are intrinsically programmed for short-term responses and targeting key regulators could promote long-term, tissue-targeted protection at this critical life stage.
Project description:<p>The goal of the RSV Bronchiolitis in Early Life (RBEL) study is to determine how specific genetic, biologic, and immunologic characteristics interact to predispose individuals to develop asthma. Participants were carefully recruited by selecting a prospective cohort of 206 infants with severe respiratory syncytial virus (RSV) bronchiolitis who were at substantial risk of developing asthma.</p>