Project description:Rhododendron is well known woody plant, as having high ornamental and economic values. Heat stress is one of the important environmental stresses that effects Rhododendron growth. Recently, melatonin was reported to alleviate abiotic stress in plants. However, the role of melatonin in Rhododendron is still unknown. In the present study, the effect of melatonin on Rhododendron under heat stress and the potential mechanism was investigated. Through morphological characterization and chlorophyll a fluorescence analysis, 200µM was selected for the best melatonin concentration to mitigate heat stress in Rhododendron. To reveal the mechanism of melatonin priming alleviating the heat stress, the photosynthesis indexes, Rubisco activity and ATP content were detected in 25 ℃, 35 ℃ and 40 ℃. The results showed that melatonin improves electron transport rate (ETR), PSII and PSI activity, Rubisco activity and ATP content under high temperature stress. Furthermore, transcriptome analysis showed that a significant enrichment of differentially expressed genes in the photosynthesis pathway, and most of genes in photosynthesis pathway displayed a more significantly slight down-regulation under high temperature stress in melatonin-treatment plants, compared with melatonin-free plants. We identified PGR5……Together, these results demonstrate that melatonin could promote the photosynthetic electron transport, improve the enzymes activities in Calvin cycle and the production of ATP, and thereby increase photosynthetic efficiency and CO2 assimilation capacity under heat stress, through regulating the expression of some key genes, such as PGR5…Therefore, melatonin application displayed great potential to cope with the heat stress in Rhododendron.
Project description:In the process of field production, crops are often affected by a variety of abiotic stresses, among which heat (HT) and drought (DR) stress are the most common co-stresses in summer. Although a large number of studies have been carried out on HT and DR stress respectively, little is known about how their combination (DH) affects plants. In this study, we investigated the responses of sweetpotato to HT, DR or DH stress by RNA-seq and DIA technologies, and set up a controlled experiment and quantified gene expression and protein concentrations from paired samples. A total of 12 cDNA libraries were constructed under HT, DR, DH and control condition. We identified 536, 389 and 907 DEGs in response to HT, DR or DH stress, of which 147 were shared and 447 were specifically identified under DH stress. Proteomic analysis identified 1609, 1168 and 1535 DEPs under HT, DR and DH treatments compared to the control, of which 656 were shared and 358 were exclusively identified under DH stress. Further analysis revealed that some DEGs/DEPs associated with heat shock protein, carbon metabolism, phenylalanine metabolism, starch and cellulose metabolism, plant defense and so on. Correlation analysis identified a number of co-expressed genes and proteins under HT, DR or DH stress. Meanwhile, a cross-comparison of transcriptomics and proteomics data identified 59, 35 and 86 significant co DEGs and DEPs genes under HT, DR and DH stress respectively. This is the first time that studies the differential genes and proteins of sweet potato under DH stress, and hopes that the results of this study will help us to understand the molecular mechanism of sweet potato resistance to heat and drought stress.
2022-10-23 | GSE216152 | GEO
Project description:Melatonin-induced transcriptome variation of rapeseed seedlings under salt stress
| PRJNA561674 | ENA
Project description:Transcriptomic in diploid potato under heat stress
Project description:To screen genes related to the development of sweet potato tuberous roots, the high throughput sequencing of different stages of sweet potato tuberous roots was performed. The fibrous roots (FR; roots at 20 dap), developing tuberous roots (DR; roots at 60 dap) and mature tuberous roots (MR; roots at 120 dap) of Ipomoea batatas (L.) Taizhong 6 and MBP3 overexpressed lines were used for transcriptome analysis. Totally, we identified 5488 differentially expressed genes between different stage tuberous roots of Taizhong6 and 14312 differentially expressed genes between the tuberous roots of Taizhong6 and MBP3 overexpressed lines, by calculating the gene FPKM in each sample and conducting differential gene analysis. This study provides a foundation for the mechanism analysis of sweet potato tuberous root development.
Project description:Two complementary protein extraction methodologies coupled with an automated proteomic platform were employed to analyze tissue-specific proteomes and characterize biological and metabolic processes in sweet potato. A total of 74,255 peptides corresponding to 4,321 nonredundant proteins were successfully identified. Data were compared to predicted protein accessions for Ipomea species and mapped on the sweet potato transcriptome and haplotype-resolved genome. A proteogenomics analysis successfully mapped 12,902 peptides against the transcriptome or genome, representing 90.4% of the total 14,275 uniquely identified peptides, predicted 741 new protein-coding genes, and specified 2726 loci where annotations can be further improved. Overall, 39,916 peptides mapped to 3,143 unique proteins in leaves, and 34,339 peptides mapped to 2,928 unique proteins in roots; 32% and 27% unique identified proteins were leaves- and roots-specific, respectively.
Project description:Systems responses of mature leaves from 4 reference cultivars of a larger collection of European potato cultivars (Solanum tuberosum L.) are investigated by metabolome profiling and RNA-Sequencing. The chosen reference cultivars, Milva, Alegria, Desiree, and Saturna, vary in ascending order in regard to drought tolerance. Systems analyses are based on 3 independent field trials and 3 paralleled greenhouse trials. Robust responses across all cultivars and conditions to natural seasonal drought stress comprise proline, raffinose, galactinol, arabitol, arabinonic acid, chlorogenic acid, and 102 transcripts which consist to a high proportion of heat shock proteins and genes with signaling or regulatory functions, such as a homolog of abscisic acid receptor PYL4. Constitutive differences of the tolerant cultivars, Desiree and Saturna, compared to the sensitive cultivars include arbutin (hydroquinone-beta-D-glucopyranoside), octopamine (p-hydroxyphenylethanolamine), ribitol and 248 differential transcripts. Many of these transcripts are disease related, receptor kinases, or regulatory genes, for example a homolog of the Arabidopsis FOUR LIPS MYB-regulator of stomatal cell proliferation. Functional enrichment analyses imply that heat stress is a major acclimation component of potato leaves to agronomical relevant drought stress. Enhanced leaf heat stress is a result of drought caused by loss of transpiration cooling. This effect and CO2-limitation are the main dilemmas of drought- or ABA-induced stomatal closure. Constitutive differences between tolerant and sensitive cultivars indicate partially synergistic interactions of drought and biotic stress responses. We suggest that drought tolerance of the potato reference cultivars may be caused by general resistance mechanisms which are part of previously selected pathogen tolerance. Transcriptome profiling by RNA-sequencing of 48 leaf samples from 4 potato cultivars grown under control or drought stress conditions in 6 independent experiments
Project description:Melatonin plays a potential role in multiple plant developmental processes and stress response. However, there are no reports regarding exogenous melatonin promoting rice seed germination under salinity and nor about the underlying molecular mechanisms at genome-wide. Here, we revealed that exogenous application of melatonin conferred roles in promoting rice seed germination under salinity. The putative molecular mechanisms of exogenous melatonin in promoting rice seed germination under high salinity were further investigated through metabolomic and transcriptomic analyses. The results state clearly that the phytohormone contents were reprogrammed, the activities of SOD, CAT, POD were enhanced, and the total antioxidant capacity was activated under salinity by exogenous melatonin. Additionally, melatonin-pre-treated seeds exhibited higher concentrations of glycosides than non-treated seeds under salinity. Furthermore, exogenous melatonin alleviated the accumulation of fatty acids induced by salinity. Genome-wide transcriptomic profiling identified 7160 transcripts that were differentially expressed in NaCl, MT100 and control. Pathway and GO term enrichment analysis revealed that genes involved in the response to oxidative stress, hormone metabolism, heme building, mitochondrion, tricarboxylic acid transformation were altered after melatonin pre-treatment under salinity. This study provides the first evidence of the protective roles of exogenous melatonin in increasing rice seed germination under salt stress, mainly via activation of antioxidants and modulation of metabolic homeostasis.
Project description:Sweet potato virus disease (SPVD) is one of the most devastating diseases affecting sweetpotato (Ipomoea batatas), an important food crop in developing countries. SPVD develops when sweetpotato plants are dually infected with sweet potato feathery mottle virus (SPFMV) and sweet potato chlorotic stunt virus (SPCSV). In the current study, global gene expression between SPVD affected plants and virus-tested control plants (VT) were compared in the susceptible ‘Beauregard’ and resistant ‘NASPOT 1’ (Nas) sweetpotato cultivars at 5, 9, 13 and 17 days post inoculation (DPI).
Project description:Global gene expression signatures was analysed through microarray expression profiling as a discovery platform to identify up and down regulated ESTs that represent genes involved in metabolic pathways in the leaf, fibrous root and storage root (tuber forming root) of sweetpotato (Ipomoea batatas) as affcted by high temperature stress (40oC) compared to ambient temperature (30oC). Also Global gene expression signatures was analysed by the same procedure to explore up and down regulated ESTs in tuberous root of sweet potato in comparison with fibrous root of Ipomoea cornea and identify unique ESTs that represent genes involved in tuber formation in sweet potato.