Project description:Jellyfish blooms represent a significant, but largely overlooked, source of labile organic matter (jelly-OM) in the ocean, characterized by high protein content with a low C:N ratio. The bloom-decay cycle of jellyfish in coastal waters are important vehicles for carbon export to the ocean’s interior. To accurately incorporate them into biogeochemical models, the interactions between microbes and jelly-OM have yet to be fully characterized. We conducted jelly-OM enrichment experiments to simulate the scenario experienced by the coastal microbiome after the decay of a jellyfish bloom. We combined metagenomics, endo- and exo-metaproteomic approaches to obtain a mechanistic understanding on the metabolic network operated by the jelly-OM degrading bacterial consortium.
Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212). Total RNA was isolated from 64 filtered environmental water samples collected in the Columbia River coastal margin during 4 research cruises (14 from August, 2007; 17 from November, 2007; 18 from April, 2008; and 16 from June, 2008), and analyzed using microarray hybridization with the CombiMatrix 4X2K format. Microarray targets were prepared by reverse transcription of total RNA into fluorescently labeled cDNA. All samples were hybridized in duplicate, except samples 212 and 310 (hybridized in triplicate) and samples 336, 339, 50, 152, 157, and 199 (hybridized once). Sample location codes: number shows distance from the coast in km; CR, Columbia River transect in the plume and coastal ocean; NH, Newport Hydroline transect in the coastal ocean at Newport, Oregon; AST and HAM, Columbia River estuary locations near Astoria (river mile 7-9) and Hammond (river mile 5), respectively; TID, Columbia River estuary locations in the tidal basin (river mile 22-23); BA, river location at Beaver Army Dock (river mile 53) near Quincy, Oregon; UP, river location at mile 74.
Project description:Although N2 fixation can occur in free-living cyanobacteria, the unicellular endosymbiotic cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) is considered to be a dominant N2-fixing species in marine ecosystems. Four UCYN-A sublineages are known from partial nitrogenase (nifH) gene sequences. However, few studies have investigated their habitat preferences and regulation by their respective hosts in open-ocean versus coastal environments. Here, we compared UCYN-A transcriptomes from oligotrophic open-ocean versus nutrient-rich coastal waters. UCYN-A1 metabolism was more impacted by habitat changes than UCYN-A2. However, across habitats and sublineages genes for nitrogen fixation and energy production were highly transcribed. Curiously these genes, critical to the symbiosis for the exchange of fixed nitrogen for fixed carbon, maintained the same schedule of diel expression across habitats and UCYN-A sublineages, including UCYN-A3 in the open-ocean transcriptomes. Our results undersore the importance of nitrogen fixation in UCYN-A symbioses across habitats, with consequences for community interaction and global biogeochemical cycles.
Project description:A short-term microcosm experiment was conducted to evaluate the impact of wastewater discharge on coastal microbial communities. Coastal seawater was exposed to two types of treated wastewater: (i) unfiltered wastewater, containing nutrients, pollutants, and allochthonous microbes, and (ii) filtered wastewater, which retained only nutrients and pollutants while removing microbial components. Metaproteomic samples were collected from the coastal seawater prior to the experiment and from each experimental flask at the late exponential growth phase to assess microbial functional responses to wastewater exposure.