Project description:The aim of this study is to investigate the effects of dietary plant and animal proteins on gut metabolism and markers for colorectal cancer as well as blood protein metabolites and markers for type 2 diabetes in healthy adults. The study participants will be stratified into three groups with different protein composition in diets: 1) animal 70%/plant 30%; 2) animal 50%/plant 50% and 3) animal 30%/plant 70%. The participants will get part of their diet as ready foods or raw material to promote their compliance. The participants will also get personal advice for their diets. Blood, stool and urine samples will be collected in the beginning and in the end of the 12 week intervention, as well as phenotype measures like BMI, blood pressure and body composition. The participants will also fill food diary before and in the end of the intervention.
Project description:Plant-based diets could be a key source of microRNAs in animals. Plant microRNAs are cross-kingdom gene expression regulators that could modulate mammalian gene expression, influencing their physiology. Therefore, it is important to identify the microRNA expression profile of plant foods in order to identify potential target genes and biological functions in the mammalian host. Next-generation sequencing was applied to identify microRNAs in RNA samples derived from nuts (walnut and almond), vegetables (spinach) and fruits (orange, apple, olive, pear, and tomato). Our data revealed that edible plant contain a large number and diverse type of microRNAs.
Project description:Plant-specific growth-regulating factors (GRFs) participate in multiple central developmental processes including root and leaf development, flower and seed formation, plant senescence, and tolerance to stress. While the role of the miRNA-GRFs regulatory module in determining gross morphology, which is one of the most important agronomic traits for crops, have not been comprehensively unraveled yet. Here, we reported that OsGRF7, a target of miR396e and co-activated with OsGIFs, is essential for determining plant architecture in rice. Overexpression of OsGRF7 leads to decreased tiller number, leaf length and leaf angle, reduced plant height and increased grain size, which are mediated by shortened cell length and disordered cell arrangement. Further analyses indicate that OsGRF7 binds the ACRGDA motif in promoters of OsNSP2, OsGASR1 and OsCYP714B1, OsCga1 and OsARF12, which are involved in the synthesis of strigolactones, gibberellins and cytokinins or related to auxin signaling pathway. Our findings establish OsGRF7 as a crucial component in the miR396-OsGRFs/OsGIFs-plant hormone regulatory network that controls rice growth and plant architecture.This dataset records the profile of the binding peaks of OsGRF7 with GFP antibody in 35S:GRF7-GFP overexpression lines.
Project description:Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a powerful method for profiling histone modifications and transcription factors binding throughout the genome. However, its application in economically important plant organs (EIPOs) such as seeds, fruits, tubers and flowers is challenging due to their sturdy cell walls and complex constituents. Here, we present advanced ChIP (aChIP), an optimized ChIP-seq strategy that efficiently isolates chromatin from plant tissues while simultaneously removing plant cell walls and cellular constituents. aChIP enables precise profiling of histone modifications in all tested EIPOs as well as transcription factors and chromatin-modifying enzymes. Notably, it significantly enhances ChIP efficiency and uncovers numerous novel modified sites compared to previous methods in vegetativetissues. Remarkably, aChIP unveils the first histone modification landscape of dry rapeseed seeds, illuminating the intricate roles of histone marks in EIPOs. Together, aChIP is a potent, efficient, and sensitive approach for comprehensive chromatin protein profiling across virtually all plant tissues, advancing plant epigenomics and functional genomics research, particularly within EIPOs.