Project description:Bacillus velezensis strain GH1-13 isolated from a rice paddy soil in Korea has been reported to promote plant growth and inhibit some pathogens. It contains a plasmid pBV71, thought to be of benefit to the strain, but there is no information on its effect. In order to elicit the plasmid effect on gene expression, mRNA and protein levels were analyzed at various stages of bacterial growth. Comparative gene expression profiles between the plasmid-containing and plasmid-free cells revealed that strain GH1-13 activated a transient stress response in the exponential phase. It showed early activation of expression of sigma W operon, liaIHGFSR operon, and transcription regulators for transition state, associated with carbon catabolite repression and secondary metabolite biosynthesis of acetoin, bacillaene, and macrolactin.
2021-05-17 | PXD008573 | Pride
Project description:Bacillus velezensis SQR9 promotes plant growth through colonization and rhizosphere-phyllosphere bacteria manipulation
Project description:<p>In this study, a strain isolated from the surface of flue-cured tobacco leaves, identified as <em>Bacillus velezensis</em> HJ-16, was applied in the solid-state fermentation of tobacco leaves. This strain, known for producing thermally stable enzymes, including amylase, cellulase, and protease, significantly improved the sensory qualities of tobacco, enhancing aromatic intensity, density, and softness, while reducing irritation. Whole-genome sequencing and functional annotation revealed that <em>B. velezensis</em> HJ-16 possesses a single circular chromosome containing genes associated with enzyme production and metabolic activities, particularly in carbohydrate metabolism and amino acid metabolism. Untargeted metabolomics analysis identified significant changes in non-volatile metabolites induced by fermentation. These metabolites were enriched in pathways related to flavonoid biosynthesis, alkaloid biosynthesis, aromatic amino acid metabolism, lipid metabolism, and carbon metabolism. Metagenomic analysis showed that Bacillus became the dominant genus on the tobacco leaf surface following inoculation with <em>B. velezensis</em> HJ-16, altering the microbial community composition, reducing diversity and evenness, and enhancing microbial metabolic activity. These findings underscore the potential of <em>B. velezensis</em> HJ-16 as a biotechnological tool to improve tobacco leaf quality.</p>
Project description:Bacillus velezensis strain GH1-13 with a native conjugative plasmid (pBV71) is thought to be beneficial to the bacterium, although no information on its effects exists. Here we show that strain GH1-13 frequently lost the plasmid during normal growth conditions in a rich medium and changed the morphology and sensitivity to selenite and tellurite. Compared to the plasmid-cured cells, the wild-type and complemented cells exhibited multicellular behavior with the expression of conjugative type IV pili and regulatory Rap homologous genes that regulate the interconnection between conjugation and biofilm formation. Further omics-based analyses of morphogenesis, biofilm formation, and antibiotic synthesis suggest that the conjugative plasmid activates envelope stress responses in association with increased biosynthesis of extracellular polysaccharide and antibiotics for protective functions of the host during exponential phase.
Project description:Plants develop mutualistic association with beneficial rhizobacteria. To understand this important phenomenon, early mechanisms for establishing the mutualism are critical. Here we report that active DNA demethylation in plants controls root secretion of myo-inositol, which triggers and further facilitates colonization of the beneficial rhizobacteria Bacillus megaterium strain YC4, thereby allowing for plant growth-promotion. YC4 promotes plant growth but the beneficial effects were lost in the Arabidopsis mutant rdd that is defective in active DNA demethylation. Roots of rdd failed to associate with YC4, meanwhile the level of myo-inositol in root exudates was drastically reduced in rdd. Supplementation of myo-inositol to rdd restored YC4 colonization and plant growth-promotion, while plants with defective myo-inositol monophosphatase also failed in establishing mutualism with YC4. myo-Inositol not only induced chemotaxis of YC4 but also increased YC4 biofilm production, consistent with the transcriptional regulation of YC4 by myo-inositol. In addition, myo-inositol preferentially attracts Bacillus megaterium among the examined bacteria species. Regardless of YC4 inoculation, myo-inositol biosynthesis and catabolism genes are down- and up-regulated, respectively, in rdd compared to wild type plants. The differential expression of myo-inositol homeostasis genes is correlated with local DNA hypermethylation, whereas genetic disruption of the RNA-directed DNA methylation pathway abolished these epigenetic marks and reset the corresponding gene expression patterns, resulting in restored YC4 colonization and plant growth-promotion. Importantly, that active DNA demethylation controls myo-inositol-mediated mutualism between YC4 and plants was also demonstrated in Solanum lycopersicum. Our results uncover an important function of myo-inositol in plant-microbe interactions and its dependence on plant epigenetic regulation.
Project description:Plants develop mutualistic association with beneficial rhizobacteria. To understand this important phenomenon, early mechanisms for establishing the mutualism are critical. Here we report that active DNA demethylation in plants controls root secretion of myo-inositol, which triggers and further facilitates colonization of the beneficial rhizobacteria Bacillus megaterium strain YC4, thereby allowing for plant growth-promotion. YC4 promotes plant growth but the beneficial effects were lost in the Arabidopsis mutant rdd that is defective in active DNA demethylation. Roots of rdd failed to associate with YC4, meanwhile the level of myo-inositol in root exudates was drastically reduced in rdd. Supplementation of myo-inositol to rdd restored YC4 colonization and plant growth-promotion, while plants with defective myo-inositol monophosphatase also failed in establishing mutualism with YC4. myo-Inositol not only induced chemotaxis of YC4 but also increased YC4 biofilm production, consistent with the transcriptional regulation of YC4 by myo-inositol. In addition, myo-inositol preferentially attracts Bacillus megaterium among the examined bacteria species. Regardless of YC4 inoculation, myo-inositol biosynthesis and catabolism genes are down- and up-regulated, respectively, in rdd compared to wild type plants. The differential expression of myo-inositol homeostasis genes is correlated with local DNA hypermethylation, whereas genetic disruption of the RNA-directed DNA methylation pathway abolished these epigenetic marks and reset the corresponding gene expression patterns, resulting in restored YC4 colonization and plant growth-promotion. Importantly, that active DNA demethylation controls myo-inositol-mediated mutualism between YC4 and plants was also demonstrated in Solanum lycopersicum. Our results uncover an important function of myo-inositol in plant-microbe interactions and its dependence on plant epigenetic regulation.
Project description:Plants develop mutualistic association with beneficial rhizobacteria. To understand this important phenomenon, early mechanisms for establishing the mutualism are critical. Here we report that active DNA demethylation in plants controls root secretion of myo-inositol, which triggers and further facilitates colonization of the beneficial rhizobacteria Bacillus megaterium strain YC4, thereby allowing for plant growth-promotion. YC4 promotes plant growth but the beneficial effects were lost in the Arabidopsis mutant rdd that is defective in active DNA demethylation. Roots of rdd failed to associate with YC4, meanwhile the level of myo-inositol in root exudates was drastically reduced in rdd. Supplementation of myo-inositol to rdd restored YC4 colonization and plant growth-promotion, while plants with defective myo-inositol monophosphatase also failed in establishing mutualism with YC4. myo-Inositol not only induced chemotaxis of YC4 but also increased YC4 biofilm production, consistent with the transcriptional regulation of YC4 by myo-inositol. In addition, myo-inositol preferentially attracts Bacillus megaterium among the examined bacteria species. Regardless of YC4 inoculation, myo-inositol biosynthesis and catabolism genes are down- and up-regulated, respectively, in rdd compared to wild type plants. The differential expression of myo-inositol homeostasis genes is correlated with local DNA hypermethylation, whereas genetic disruption of the RNA-directed DNA methylation pathway abolished these epigenetic marks and reset the corresponding gene expression patterns, resulting in restored YC4 colonization and plant growth-promotion. Importantly, that active DNA demethylation controls myo-inositol-mediated mutualism between YC4 and plants was also demonstrated in Solanum lycopersicum. Our results uncover an important function of myo-inositol in plant-microbe interactions and its dependence on plant epigenetic regulation.