Project description:BackgroundMalaria, due to Plasmodium ovale, can be challenging to diagnose due to clinically mild disease and low parasite burden. Two genetically distinct sub-species of P. ovale exist: Plasmodium ovale curtisi (classic) and Plasmodium ovale wallikeri (variant). It is presently unknown if the sub-species causing infection affects performance of malaria diagnostic tests. The aim of this work was to understand how the genetically distinct sub-species, P. o. curtisi and P. o. wallikeri, affect malaria diagnostic tests.MethodsPlasmodium ovale-positive whole blood specimens were sub-speciated by PCR and sequencing of 18S rRNA and dhfr-ts. Parasitaemia, morphology, pan-aldolase positivity, 18S copy number, and dhfr-ts sequences were compared between sub-species.ResultsFrom 2006 to 2015, 49 P. ovale isolates were identified, of which 22 were P. o. curtisi and 27 P. o. wallikeri; 80% were identified in the last five years, and 88% were acquired in West Africa. Sub-species did not differ by parasitaemia, 18S copy number, or pan-aldolase positivity. Lack of Schüffner's stippling was over-represented among P. o. wallikeri isolates (p = 0.02). Several nucleotide polymorphisms between the sub-species were observed, but they do not occur at sites believed to relate to antifolate binding.ConclusionsPlasmodium ovale is increasing among travellers to West Africa, although sub-species do not differ significantly by parasitologic features such as parasitaemia. Absence of Schüffner's stippling may be a feature specific to P. o. wallikeri and is a novel finding.
Project description:BackgroundIn Ethiopia Plasmodium falciparum and Plasmodium vivax are the dominant species accounting for roughly 60 and 40% of malaria cases, respectively. Recently a major shift from P. falciparum to P. vivax has been observed in various parts of the country but the epidemiology of the other human malaria species, Plasmodium ovale spp. and Plasmodium malariae remains poorly understood. The aim of this study was to assess P. ovale curtisi and wallikeri infection in north-west Ethiopia by using microscopy and nested PCR.MethodsA health institution-based survey using non-probability sampling techniques was conducted at Maksegnet, Enfranze and Kola Diba health centres and Metema hospital in North Gondar. Three-hundred patients with signs and symptoms consistent with malaria were included in this study and capillary blood was collected for microscopic examination and molecular analysis of Plasmodium species. Samples were collected on Whatman 903 filter papers, stored in small plastic bags with desiccant and transported to Vienna (Austria) for molecular analysis. Data from study participants were entered and analysed by SPSS 20 software.ResultsOut of 300 study participants (167 males and 133 females), 184 samples were classified positive for malaria (133 P. falciparum and 51 P. vivax) by microscopy. By species-specific PCR 233 Plasmodium spp (95% CI: 72.6-82) were detected and the majority 155 (66.5%, 95% CI: 60.2-72.3) were P. falciparum followed by P. vivax 69 (29.6%, 95% CI; 24.1-35.8) and 9 (3.9%, 95% CI: 2-7.2) samples were positive for P. ovale. Seven of P. ovale parasites were confirmed as P. ovale wallikeri and two were confirmed as P. ovale curtisi. None of the samples tested positive for P. malariae. During microscopic examination there were high (16.3%) false negative reports and all mixed infections and P. ovale cases were missed or misclassified.ConclusionThis study indicates that P. ovale malaria is under-reported in Ethiopia and provides the first known evidence of the sympatric distribution of indigenous P. ovale wallikeri and P. ovale curtisi in Ethiopia. Therefore, further studies assessing the prevalence of the rare species P. ovale and P. malariae are urgently needed to better understand the species distribution and to adapt malaria control strategies.