Project description:In this study, we report the complete chloroplast (cp) genome of Thelypteris interrupta, a fern member, and comparative analysis with its related family members. The cp genome was 155,983 bp long, with a typical quadripartite structure including a pair of inverted repeat regions (25,614 bp) separated by a large (82,769 bp) and small (21,986 bp) single-copy (SC) region. The genome encodes a total of 88 protein-coding genes, 35 tRNA genes, and 8 rRNA genes. Additionally, we identified 86 RNA editing sites in 52 genes; most of the substitution was U to C (52 sites), while C to U conversion occurred in 34 positions. The phylogenetic analysis strongly supported the relationship of T. interrupta with Ampelopteris prolifera and Christella appendiculata of Thelypteridoideae family.
Project description:BackgroundSophora belongs to the family of Fabaceae and the species in this genus are currently used as a folklore medicine for preventing a variety of ailments including cancer. Our aim was to identify and validate an anticancer compound from Sophora interrupta using multi-spectroscopic, anticancer screening, and molecular docking approach.MethodsThe cytotoxicity of the various solvent extracts, petroleum ether, n-butanol, and ethyl acetate (EtOAc) of the S. interrupta root powder was evaluated in a breast cancer cell lines (MCF-7). The extract that had anticancer activity was subjected to column chromatography based on the polarity of the solvents. The anticancer activity of the elution fractions was validated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The isolated metabolite fraction with anticancer activity was run through a C18 column isocratic and gradient high-performance liquid chromatography (HPLC). The structure of the isolated compound was characterized using (1)H nuclear magnetic resonance (NMR), (13)C-NMR, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometer methods.ResultsThe crude EtAOc extract effectively inhibited the proliferation of MCF-7 cells. The column eluted chloroform and EtOAc (4:6) fraction of the EtOAc extract showed significant anticancer activity in the MCF-7 cells compared with normal mesenchymal stem cells. This fraction showed three major peaks in the HPLC chromatogram and the first major peak with a retention time (RT) of 7.153 was purified using preparative-HPLC. The structure of the compound is a piceatannol, which is a metabolic product of resveratrol. Piceatannol formed direct two hydrogen bond interactions between Cys912 (2H), and Glu878 of vascular endothelial growth factor receptor 1 (VEGFR1) with a glide-score (G-score) of -10.193, and two hydrogen bond interactions between Cys919, and Asp1046 of VEGFR2, with a G-score of -8.359. The structure is similar to that of the crystallized protein for VEGFR1 and R2.ConclusionsPiceatannol is a secondary metabolite of S. interrupta that has anticancer activity. Moreover, piceatannol has been isolated for the first time from S. interrupta.