Project description:Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides) roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. Results indicate the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose.The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems. Fully formed L.bicolor::P.trichocapra mycorrhizae in duplicate
Project description:The importance of the mammalian intestinal microbiota to human health has been intensely studied over the past few years. It is now clear that the interactions between human hosts and their associated microbial communities need to be characterized in molecular detail if we are to truly understand human physiology. Additionally, the study of such host-microbe interactions is likely to provide us with new strategies to manipulate such complex systems to maintain or restore homeostasis in order to prevent or cure pathological states. We describe the use of high-throughput metabolomics to shed light on the interactions between the intestinal microbiota and the host. We show that treatment with the antibiotic streptomycin disrupts intestinal homeostasis and has a profound impact on the intestinal metabolome, affecting the levels of over 87% of all metabolites detected. Many metabolic pathways that are critical for host physiology were affected, including bile acid, eicosanoid and steroid hormone synthesis. Interestingly, many of these pathways are also affected by intestinal pathogens. Dissecting the effect of both beneficial and pathogenic bacteria on some of these pathways will be instrumental in understanding the interplay between the host, the resident microbiota and incoming pathogens and may aid in the design of new therapeutic strategies that target these interactions.
Project description:An essential function of the liver is the formation of bile. This aqueous solution is critical for fat absorption and is transported to the duodenum via the common bile duct. Despite extensive studies of bile salts, other components of bile are less well-charted. Here, we characterized the murine bile metabolome and investigated how the microbiota and enteric infection influence bile composition. We discovered that the bile metabolome is not only substantially more complex than appreciated but is dynamic and responsive to the microbiota and enteric infection. Hepatic transcriptomics identified enteric infection-triggered pathways that likely underlie bile remodeling. Enteric infections stimulated elevation of four dicarboxylates in bile that modulated intestinal gut epithelial and microbiota composition, inflammasome activation, and host defense. Our data suggest that enteric infection-associated signals are relayed between the intestine and liver and induce transcriptional programs that shape the bile metabolome, modifying bile’s immunomodulatory and host defense functions.
Project description:Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides) roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. Results indicate the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose.The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.
Project description:Elucidating the metabolome of the filamentous fungi Neurospora crassa to better understand the link between the circadian clock and metabolism; specifically the role that the clock plays in regulating cellulase production.
Project description:Under steady state conditions, the immune system is poised to sense and respond to the microbiota. As such, immunity to the microbiota, including T cell responses, is expected to precede any inflammatory trigger. How this pool of preformed microbiota-specific T cells contributes to tissue pathologies remains unclear. Here, using an experimental model of psoriasis, we show that recall responses to commensal skin fungi can significantly aggravate tissue inflammation. Enhanced pathology caused by fungi pre-exposure depends on Th17 responses and neutrophil extracellular traps and recapitulates features of the transcriptional landscape of human lesional psoriatic skin. Together, our results propose that recall responses directed to skin fungi can directly promote skin inflammation and that exploration of tissue inflammation should be assessed in the context of recall responses to the microbiota.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and the strain Pseudomonas fluorescens Pf29Arp during their interactions in vitro.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and one detrimental bacterial strain during their interactions in vitro.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and one detrimental bacterial strain during their interactions in vitro.